von Caemmerer Susanne, Furbank Robert T
Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra, ACT, 2601, Australia.
Photosynth Res. 2003;77(2-3):191-207. doi: 10.1023/A:1025830019591.
The C(4) pathway is a complex combination of both biochemical and morphological specialisation, which provides an elevation of the CO(2) concentration at the site of Rubisco. We review the key parameters necessary to make the C(4) pathway function efficiently, focussing on the diffusion of CO(2) out of the bundle sheath compartment. Measurements of cell wall thickness show that the thickness of bundle sheath cell walls in C(4) species is similar to cell wall thickness of C(3) mesophyll cells. Furthermore, NAD-ME type C(4) species, which do not have suberin in their bundle sheath cell walls, do not appear to compensate for this with thicker bundle sheath cell walls. Uncertainties in the CO(2) diffusion properties of membranes, such as the plasmalemma, choroplast and mitochondrial membranes make it difficult to estimate bundle sheath diffusion resistance from anatomical measurements, but the cytosol itself may account for more than half of the final calculated resistance value for CO(2) leakage. We conclude that the location of the site of decarboxylation, its distance from the mesophyll interface and the physical arrangement of chloroplasts and mitochondria in the bundle sheath cell are as important to the efficiency of the process as the properties of the bundle sheath cell wall. Using a mathemathical model of C(4) photosynthesis, we also examine the relationship between bundle sheath resistance to CO(2) diffusion and the biochemical capacity of the C(4) photosynthetic pathway and conclude that bundle sheath resistance to CO(2) diffusion must vary with biochemical capacity if the efficiency of the C(4) pump is to be maintained. Finally, we construct a mathematical model of single cell C(4) photosynthesis in a C(3) mesophyll cell and examine the theoretical efficiency of such a C(4) photosynthetic CO(2) pump.
C4途径是生化和形态特化的复杂组合,它能提高Rubisco位点的二氧化碳浓度。我们回顾了使C4途径高效运作所需的关键参数,重点关注二氧化碳从维管束鞘隔室扩散出来的情况。细胞壁厚度的测量表明,C4植物中维管束鞘细胞壁的厚度与C3叶肉细胞的细胞壁厚度相似。此外,在其维管束鞘细胞壁中没有栓质的NAD-ME型C4植物,似乎也没有用更厚的维管束鞘细胞壁来弥补这一点。诸如质膜、叶绿体膜和线粒体膜等膜的二氧化碳扩散特性存在不确定性,这使得从解剖学测量来估计维管束鞘扩散阻力变得困难,但胞质溶胶本身可能占最终计算出的二氧化碳泄漏阻力值的一半以上。我们得出结论,脱羧位点的位置、其与叶肉界面的距离以及维管束鞘细胞中叶绿体和线粒体的物理排列,对于该过程的效率而言,与维管束鞘细胞壁的特性同样重要。使用C4光合作用的数学模型,我们还研究了维管束鞘对二氧化碳扩散的阻力与C4光合途径的生化能力之间的关系,并得出结论,如果要维持C4泵的效率,维管束鞘对二氧化碳扩散的阻力必须随生化能力而变化。最后,我们构建了一个C3叶肉细胞中单细胞C4光合作用的数学模型,并研究了这种C4光合二氧化碳泵的理论效率。