Acha Begoña, Serrano Carmen, Acha José I, Roa Laura M
Area de Teoría de la Señal y Comunicaciones, Escuela Técnica Superior de Ingenieros, University of Seville, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain.
J Biomed Opt. 2005 May-Jun;10(3):034014. doi: 10.1117/1.1921227.
In this paper, a burn color image segmentation and classification system is proposed. The aim of the system is to separate burn wounds from healthy skin, and to distinguish among the different types of burns (burn depths). Digital color photographs are used as inputs to the system. The system is based on color and texture information, since these are the characteristics observed by physicians in order to form a diagnosis. A perceptually uniform color space (Luv*) was used, since Euclidean distances calculated in this space correspond to perceptual color differences. After the burn is segmented, a set of color and texture features is calculated that serves as the input to a Fuzzy-ARTMAP neural network. The neural network classifies burns into three types of burn depths: superficial dermal, deep dermal, and full thickness. Clinical effectiveness of the method was demonstrated on 62 clinical burn wound images, yielding an average classification success rate of 82%.
本文提出了一种烧伤彩色图像分割与分类系统。该系统的目的是将烧伤创面与健康皮肤分离,并区分不同类型的烧伤(烧伤深度)。数字彩色照片用作系统的输入。该系统基于颜色和纹理信息,因为这些是医生为了做出诊断而观察到的特征。使用了一种感知均匀颜色空间(Luv*),因为在此空间中计算的欧几里得距离对应于感知颜色差异。在烧伤被分割后,计算一组颜色和纹理特征,作为模糊ARTMAP神经网络的输入。该神经网络将烧伤分为三种烧伤深度类型:浅度真皮烧伤、深度真皮烧伤和全层烧伤。在62张临床烧伤创面图像上证明了该方法的临床有效性,平均分类成功率为82%。