Suppr超能文献

张量分解在烧伤创面彩色图像分割中的应用。

Tensor Decomposition for Colour Image Segmentation of Burn Wounds.

机构信息

Department of Biomedical Engineering, Linköping University, Linköping, Sweden.

The Burn Centre, Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden.

出版信息

Sci Rep. 2019 Mar 1;9(1):3291. doi: 10.1038/s41598-019-39782-2.

Abstract

Research in burns has been a continuing demand over the past few decades, and important advancements are still needed to facilitate more effective patient stabilization and reduce mortality rate. Burn wound assessment, which is an important task for surgical management, largely depends on the accuracy of burn area and burn depth estimates. Automated quantification of these burn parameters plays an essential role for reducing these estimate errors conventionally carried out by clinicians. The task for automated burn area calculation is known as image segmentation. In this paper, a new segmentation method for burn wound images is proposed. The proposed methods utilizes a method of tensor decomposition of colour images, based on which effective texture features can be extracted for classification. Experimental results showed that the proposed method outperforms other methods not only in terms of segmentation accuracy but also computational speed.

摘要

在过去的几十年中,烧伤研究一直是一个持续的需求,仍然需要重要的进展来促进更有效的患者稳定和降低死亡率。烧伤创面评估是手术管理的重要任务,在很大程度上取决于烧伤面积和烧伤深度估计的准确性。这些烧伤参数的自动量化对于减少临床医生通常进行的这些估计误差起着至关重要的作用。自动烧伤面积计算的任务称为图像分割。本文提出了一种新的烧伤创面图像分割方法。所提出的方法利用彩色图像的张量分解方法,可以提取有效的纹理特征进行分类。实验结果表明,所提出的方法不仅在分割精度方面,而且在计算速度方面都优于其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd8a/6397199/d01d45dd94a2/41598_2019_39782_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验