Flores Margarita, Morales Lucia, Avila Agustín, González Víctor, Bustos Patricia, García Delfino, Mora Yolanda, Guo Xianwu, Collado-Vides Julio, Piñero Daniel, Dávila Guillermo, Mora Jaime, Palacios Rafael
Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, México.
J Bacteriol. 2005 Nov;187(21):7185-92. doi: 10.1128/JB.187.21.7185-7192.2005.
Bacteria of the genus Rhizobium and related genera establish nitrogen-fixing symbioses with the roots of leguminous plants. The genetic elements that participate in the symbiotic process are usually compartmentalized in the genome, either as independent replicons (symbiotic plasmids) or as symbiotic regions or islands in the chromosome. The complete nucleotide sequence of the symbiotic plasmid of Rhizobium etli model strain CFN42, symbiont of the common bean plant, has been reported. To better understand the basis of DNA sequence diversification of this symbiotic compartment, we analyzed the distribution of single-nucleotide polymorphisms in homologous regions from different Rhizobium etli strains. The distribution of polymorphisms is highly asymmetric in each of the different strains, alternating regions containing very few changes with regions harboring an elevated number of substitutions. The regions showing high polymorphism do not correspond with discrete genetic elements and are not the same in the different strains, indicating that they are not hypervariable regions of functional genes. Most interesting, some highly polymorphic regions share exactly the same nucleotide substitutions in more than one strain. Furthermore, in different regions of the symbiotic compartment, different sets of strains share the same substitutions. The data indicate that the majority of nucleotide substitutions are spread in the population by recombination and that the contribution of new mutations to polymorphism is relatively low. We propose that the horizontal transfer of homologous DNA segments among closely related organisms is a major source of genomic diversification.
根瘤菌属及相关属的细菌与豆科植物的根建立固氮共生关系。参与共生过程的遗传元件通常在基因组中被分隔开来,要么作为独立的复制子(共生质粒),要么作为染色体上的共生区域或岛屿。菜豆共生植物菜豆根瘤菌模式菌株CFN42的共生质粒的完整核苷酸序列已被报道。为了更好地理解这个共生区域DNA序列多样化的基础,我们分析了不同菜豆根瘤菌菌株同源区域中单核苷酸多态性的分布。多态性的分布在每个不同菌株中高度不对称,包含很少变化的区域与具有大量替换的区域交替出现。显示高多态性的区域与离散的遗传元件不对应,并且在不同菌株中也不相同,这表明它们不是功能基因的高变区。最有趣的是,一些高度多态性区域在不止一个菌株中共享完全相同的核苷酸替换。此外,在共生区域的不同区域,不同的菌株组共享相同的替换。数据表明,大多数核苷酸替换通过重组在群体中传播,新突变对多态性的贡献相对较低。我们提出,密切相关生物之间同源DNA片段的水平转移是基因组多样化的主要来源。