Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
Cell. 2022 Apr 28;185(9):1602-1617.e17. doi: 10.1016/j.cell.2022.04.001.
Prefrontal cortex (PFC) is postulated to exert "top-down control" on information processing throughout the brain to promote specific behaviors. However, pathways mediating top-down control remain poorly understood. In particular, knowledge about direct prefrontal connections that might facilitate top-down control of hippocampal information processing remains sparse. Here we describe monosynaptic long-range GABAergic projections from PFC to hippocampus. These preferentially inhibit vasoactive intestinal polypeptide-expressing interneurons, which are known to disinhibit hippocampal microcircuits. Indeed, stimulating prefrontal-hippocampal GABAergic projections increases hippocampal feedforward inhibition and reduces hippocampal activity in vivo. The net effect of these actions is to specifically enhance the signal-to-noise ratio for hippocampal encoding of object locations and augment object-induced increases in spatial information. Correspondingly, activating or inhibiting these projections promotes or suppresses object exploration, respectively. Together, these results elucidate a top-down prefrontal pathway in which long-range GABAergic projections target disinhibitory microcircuits, thereby enhancing signals and network dynamics underlying exploratory behavior.
前额皮质(prefrontal cortex,PFC)被认为对大脑中的信息处理施加“自上而下的控制”,以促进特定的行为。然而,介导自上而下控制的途径仍知之甚少。特别是,关于可能促进海马体信息处理自上而下控制的直接前额叶连接的知识仍然很少。在这里,我们描述了来自前额叶到海马体的单突触长程 GABA 能投射。这些投射优先抑制血管活性肠肽(vasoactive intestinal polypeptide,VIP)表达的中间神经元,已知这些神经元可以抑制海马微电路。事实上,刺激前额叶-海马 GABA 能投射会增加海马体的前馈抑制,并减少体内海马体的活动。这些作用的净效应是专门增强海马体对物体位置编码的信噪比,并增强物体诱导的空间信息增加。相应地,激活或抑制这些投射分别促进或抑制物体探索。总之,这些结果阐明了一个自上而下的前额叶通路,其中长程 GABA 能投射靶向抑制性微电路,从而增强了探索行为的信号和网络动力学。