Klausberger Thomas, Marton Laszlo F, O'Neill Joseph, Huck Jojanneke H J, Dalezios Yannis, Fuentealba Pablo, Suen Wai Yee, Papp Edit, Kaneko Takeshi, Watanabe Masahiko, Csicsvari Jozsef, Somogyi Peter
Medical Research Council Anatomical Neuropharmacology Unit, Oxford University, Oxford OX1 3TH, United Kingdom.
J Neurosci. 2005 Oct 19;25(42):9782-93. doi: 10.1523/JNEUROSCI.3269-05.2005.
In the hippocampal CA1 area, a relatively homogenous population of pyramidal cells is accompanied by a diversity of GABAergic interneurons. Previously, we found that parvalbumin-expressing basket, axo-axonic, bistratified, and oriens-lacunosum moleculare cells, innervating different domains of pyramidal cells, have distinct firing patterns during network oscillations in vivo. A second family of interneurons, expressing cholecystokinin but not parvalbumin, is known to target the same domains of pyramidal cells as do the parvalbumin cells. To test the temporal activity of these independent and parallel GABAergic inputs, we recorded the precise spike timing of identified cholecystokinin interneurons during hippocampal network oscillations in anesthetized rats and determined their molecular expression profiles and synaptic targets. The cells were cannabinoid receptor type 1 immunopositive. Contrary to the stereotyped firing of parvalbumin interneurons, cholecystokinin-expressing basket and dendrite-innervating cells discharge, on average, with 1.7 +/- 2.0 Hz during high-frequency ripple oscillations in an episode-dependent manner. During theta oscillations, cholecystokinin-expressing interneurons fire with 8.8 +/- 3.3 Hz at a characteristic time on the ascending phase of theta waves (155 +/- 81 degrees), when place cells start firing in freely moving animals. The firing patterns of some interneurons recorded in drug-free behaving rats were similar to cholecystokinin cells in anesthetized animals. Our results demonstrate that cholecystokinin- and parvalbumin-expressing interneurons make different contributions to network oscillations and play distinct roles in different brain states. We suggest that the specific spike timing of cholecystokinin interneurons and their sensitivity to endocannabinoids might contribute to differentiate subgroups of pyramidal cells forming neuronal assemblies, whereas parvalbumin interneurons contribute to synchronizing the entire network.
在海马CA1区,相对同质的锥体细胞群体伴随着多种GABA能中间神经元。此前,我们发现表达小白蛋白的篮状细胞、轴突-轴突细胞、双分层细胞和腔隙-分子层细胞,支配着锥体细胞的不同区域,在体内网络振荡期间具有不同的放电模式。已知第二组中间神经元表达胆囊收缩素但不表达小白蛋白,它们与表达小白蛋白的细胞靶向相同的锥体细胞区域。为了测试这些独立且平行的GABA能输入的时间活动,我们在麻醉大鼠的海马网络振荡期间记录了已识别的胆囊收缩素中间神经元的精确放电时间,并确定了它们的分子表达谱和突触靶点。这些细胞对1型大麻素受体呈免疫阳性。与小白蛋白中间神经元刻板的放电模式相反,表达胆囊收缩素的篮状细胞和支配树突的细胞在高频涟漪振荡期间平均以1.7±2.0 Hz的频率放电,且具有事件依赖性。在θ振荡期间,表达胆囊收缩素的中间神经元在θ波上升阶段(155±81度)的特定时间以8.8±3.3 Hz的频率放电,此时在自由活动的动物中位置细胞开始放电。在无药物行为大鼠中记录的一些中间神经元的放电模式与麻醉动物中的胆囊收缩素细胞相似。我们的结果表明,表达胆囊收缩素和小白蛋白的中间神经元对网络振荡有不同贡献,并且在不同脑状态下发挥不同作用。我们认为,胆囊收缩素中间神经元的特定放电时间及其对内源性大麻素的敏感性可能有助于区分形成神经元集合的锥体细胞亚群,而小白蛋白中间神经元则有助于使整个网络同步。