Suppr超能文献

基于基因和灭活病毒免疫对严重急性呼吸综合征刺突糖蛋白免疫反应的调节。

Modulation of the immune response to the severe acute respiratory syndrome spike glycoprotein by gene-based and inactivated virus immunization.

作者信息

Kong Wing-pui, Xu Ling, Stadler Konrad, Ulmer Jeffrey B, Abrignani Sergio, Rappuoli Rino, Nabel Gary J

机构信息

Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bldg. 40, Room 4502, MSC-3005, 40 Convent Drive, Bethesda, Maryland 20892-3005, USA.

出版信息

J Virol. 2005 Nov;79(22):13915-23. doi: 10.1128/JVI.79.22.13915-13923.2005.

Abstract

Although the initial isolates of the severe acute respiratory syndrome (SARS) coronavirus (CoV) are sensitive to neutralization by antibodies through their spike (S) glycoprotein, variants of S have since been identified that are resistant to such inhibition. Optimal vaccine strategies would therefore make use of additional determinants of immune recognition, either through cellular or expanded, cross-reactive humoral immunity. Here, the cellular and humoral immune responses elicited by different combinations of gene-based and inactivated viral particles with various adjuvants have been assessed. The T-cell response was altered by different prime-boost immunizations, with the optimal CD8 immunity induced by DNA priming and replication-defective adenoviral vector boosting. The humoral immune response was enhanced most effectively through the use of inactivated virus with adjuvants, either MF59 or alum, and was associated with stimulation of the CD4 but not the CD8 response. The use of inactivated SARS virus with MF59 enhanced the CD4 and antibody response even after gene-based vaccination. Because both cellular and humoral immune responses are generated by gene-based vaccination and inactivated viral boosting, this strategy may prove useful in the generation of SARS-CoV vaccines.

摘要

尽管严重急性呼吸综合征(SARS)冠状病毒(CoV)的初始分离株对通过其刺突(S)糖蛋白产生的抗体中和敏感,但此后已鉴定出对这种抑制具有抗性的S变体。因此,最佳疫苗策略将利用免疫识别的其他决定因素,无论是通过细胞免疫还是扩展的交叉反应性体液免疫。在此,评估了基于基因的疫苗和灭活病毒颗粒与各种佐剂的不同组合所引发的细胞免疫和体液免疫反应。不同的初免-加强免疫改变了T细胞反应,DNA初免和复制缺陷腺病毒载体加强诱导了最佳的CD8免疫。通过使用含有佐剂(MF59或明矾)的灭活病毒,体液免疫反应得到最有效的增强,并且与CD4而非CD8反应的刺激相关。即使在基于基因的疫苗接种后,使用含有MF59的灭活SARS病毒也能增强CD4和抗体反应。由于基于基因的疫苗接种和灭活病毒加强都能产生细胞免疫和体液免疫反应,这种策略可能在SARS-CoV疫苗的研发中证明是有用的。

相似文献

3
Priming with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+ and CD8+ T cells promote cellular immune responses.
Vaccine. 2007 Sep 28;25(39-40):6981-91. doi: 10.1016/j.vaccine.2007.06.047. Epub 2007 Jul 16.
6
CD8+ T cell response in HLA-A*0201 transgenic mice is elicited by epitopes from SARS-CoV S protein.
Vaccine. 2010 Sep 24;28(41):6666-74. doi: 10.1016/j.vaccine.2010.08.013. Epub 2010 Aug 13.

引用本文的文献

2
"World in motion" - emulsion adjuvants rising to meet the pandemic challenges.
NPJ Vaccines. 2021 Dec 21;6(1):158. doi: 10.1038/s41541-021-00418-0.
3
The immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2: Vaccine design strategies.
Int Immunopharmacol. 2021 Mar;92:107051. doi: 10.1016/j.intimp.2020.107051. Epub 2020 Sep 29.
4
Nanocarrier vaccines for SARS-CoV-2.
Adv Drug Deliv Rev. 2021 Apr;171:215-239. doi: 10.1016/j.addr.2021.01.002. Epub 2021 Jan 9.
5
Current advances in the development of SARS-CoV-2 vaccines.
Int J Biol Sci. 2021 Jan 1;17(1):8-19. doi: 10.7150/ijbs.52569. eCollection 2021.
6
Adjuvants for Coronavirus Vaccines.
Front Immunol. 2020 Nov 6;11:589833. doi: 10.3389/fimmu.2020.589833. eCollection 2020.
7
Newly Emerging Human Coronaviruses: Animal Models and Vaccine Research for SARS, MERS, and COVID-19.
Immune Netw. 2020 Jul 22;20(4):e28. doi: 10.4110/in.2020.20.e28. eCollection 2020 Aug.
8
Risk-benefit analysis on the clinical significance of convalescent plasma therapy in the management of COVID-19.
Postgrad Med J. 2021 Jul;97(1149):467-468. doi: 10.1136/postgradmedj-2020-138056. Epub 2020 Aug 17.
9
Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains.
Infect Dis Ther. 2020 Jun;9(2):255-274. doi: 10.1007/s40121-020-00300-x. Epub 2020 Apr 23.
10
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV).
Perspect Med Virol. 2006;16:43-95. doi: 10.1016/S0168-7069(06)16004-8. Epub 2006 Nov 28.

本文引用的文献

3
Immune response of vaccinated and non-vaccinated mice to Coccidioides posadasii infection.
Vaccine. 2005 May 20;23(27):3535-44. doi: 10.1016/j.vaccine.2005.01.147.
4
5
Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2.
EMBO J. 2005 Apr 20;24(8):1634-43. doi: 10.1038/sj.emboj.7600640. Epub 2005 Mar 24.
9
Cutting edge: priming of CTL by transcutaneous peptide immunization with imiquimod.
J Immunol. 2005 Mar 1;174(5):2476-80. doi: 10.4049/jimmunol.174.5.2476.
10
Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human.
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2430-5. doi: 10.1073/pnas.0409608102. Epub 2005 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验