Suppr超能文献

脊髓V1衍生中间神经元的产后表型及定位

Postnatal phenotype and localization of spinal cord V1 derived interneurons.

作者信息

Alvarez Francisco J, Jonas Philip C, Sapir Tamar, Hartley Robert, Berrocal Maria C, Geiman Eric J, Todd Andrew J, Goulding Martyn

机构信息

Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio 45435, USA.

出版信息

J Comp Neurol. 2005 Dec 12;493(2):177-92. doi: 10.1002/cne.20711.

Abstract

Developmental studies identified four classes (V0, V1, V2, V3) of embryonic interneurons in the ventral spinal cord. Very little is known, however, about their adult phenotypes. Therefore, we characterized the location, neurotransmitter phenotype, calcium-buffering protein expression, and axon distributions of V1-derived neurons in the adult mouse spinal cord. In the mature (P20 and older) spinal cord, most V1-derived neurons are located in lateral LVII and in LIX, few in medial LVII, and none in LVIII. Approximately 40% express calbindin and/or parvalbumin, while few express calretinin. Of seven groups of ventral interneurons identified according to calcium-buffering protein expression, two groups (1 and 4) correspond with V1-derived neurons. Group 1 are Renshaw cells and intensely express calbindin and coexpress parvalbumin and calretinin. They represent 9% of the V1 population. Group 4 express only parvalbumin and represent 27% of V1-derived neurons. V1-derived Group 4 neurons receive contacts from primary sensory afferents and are therefore proprioceptive interneurons. The most ventral neurons in this group receive convergent calbindin-IR Renshaw cell inputs. This subgroup resembles Ia inhibitory interneurons (IaINs) and represents 13% of V1-derived neurons. Adult V1-interneuron axons target LIX and LVII and some enter the deep dorsal horn. V1 axons do not cross the midline. V1-derived axonal varicosities were mostly (>80%) glycinergic and a third were GABAergic. None were glutamatergic or cholinergic. In summary, V1 interneurons develop into ipsilaterally projecting, inhibitory interneurons that include Renshaw cells, Ia inhibitory interneurons, and other unidentified proprioceptive interneurons.

摘要

发育研究确定了脊髓腹侧的四类(V0、V1、V2、V3)胚胎中间神经元。然而,关于它们的成年表型却知之甚少。因此,我们对成年小鼠脊髓中V1衍生神经元的位置、神经递质表型、钙缓冲蛋白表达和轴突分布进行了表征。在成熟(P20及以上)脊髓中,大多数V1衍生神经元位于外侧VII层和IX层,内侧VII层中很少,VIII层中没有。约40%表达钙结合蛋白和/或小白蛋白,而很少表达钙视网膜蛋白。根据钙缓冲蛋白表达确定的七组腹侧中间神经元中,两组(1和4)与V1衍生神经元相对应。第1组是闰绍细胞,强烈表达钙结合蛋白,并共表达小白蛋白和钙视网膜蛋白。它们占V1群体的9%。第4组仅表达小白蛋白,占V1衍生神经元的27%。V1衍生的第4组神经元接受初级感觉传入纤维的接触,因此是本体感觉中间神经元。该组最腹侧的神经元接受来自钙结合蛋白免疫反应阳性闰绍细胞的汇聚输入。这个亚组类似于Ia抑制性中间神经元(IaINs),占V1衍生神经元的13%。成年V1中间神经元的轴突靶向IX层和VII层,一些进入背角深层。V1轴突不穿过中线。V1衍生的轴突膨体大多(>80%)是甘氨酸能的,三分之一是GABA能的。没有谷氨酸能或胆碱能的。总之,V1中间神经元发育成为同侧投射的抑制性中间神经元,包括闰绍细胞、Ia抑制性中间神经元和其他未鉴定的本体感觉中间神经元。

相似文献

1
Postnatal phenotype and localization of spinal cord V1 derived interneurons.
J Comp Neurol. 2005 Dec 12;493(2):177-92. doi: 10.1002/cne.20711.
3
Characterization of calbindin D28k expressing interneurons in the ventral horn of the mouse spinal cord.
Dev Dyn. 2018 Jan;247(1):185-193. doi: 10.1002/dvdy.24601. Epub 2017 Nov 15.
4
Primary afferent synapses on developing and adult Renshaw cells.
J Neurosci. 2006 Dec 20;26(51):13297-310. doi: 10.1523/jneurosci.2945-06.2006.
6
Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.
J Comp Neurol. 2016 Jun 15;524(9):1892-919. doi: 10.1002/cne.23946. Epub 2016 Jan 4.
8
Pax6 and engrailed 1 regulate two distinct aspects of renshaw cell development.
J Neurosci. 2004 Feb 4;24(5):1255-64. doi: 10.1523/JNEUROSCI.3187-03.2004.
9
The development of parvalbumin and calbindin-D28k immunoreactive interneurons in kitten visual cortical areas.
Brain Res Dev Brain Res. 1994 Jan 14;77(1):1-21. doi: 10.1016/0165-3806(94)90209-7.

引用本文的文献

1
Synaptic imbalance and increased inhibition impair motor function in SMA.
Sci Adv. 2025 Sep 5;11(36):eadt4126. doi: 10.1126/sciadv.adt4126.
2
V2b Neurons Act via Multiple Targets to Produce in Phase Inhibition during Locomotion.
J Neurosci. 2025 Jul 16;45(29):e1530242025. doi: 10.1523/JNEUROSCI.1530-24.2025.
3
Altered Functional Connectivity Between Cortical Premotor Areas and the Spinal Cord in Chronic Stroke.
Stroke. 2025 May;56(5):1159-1168. doi: 10.1161/STROKEAHA.124.048384. Epub 2025 Mar 20.
4
Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury.
Cells. 2025 Feb 15;14(4):288. doi: 10.3390/cells14040288.
5
Hodological patterning as an organizing principle in vertebrate motor circuitry.
Front Neuroanat. 2025 Jan 8;18:1510944. doi: 10.3389/fnana.2024.1510944. eCollection 2024.
6
A brain-wide map of descending inputs onto spinal V1 interneurons.
Neuron. 2025 Feb 19;113(4):524-538.e6. doi: 10.1016/j.neuron.2024.11.019. Epub 2024 Dec 23.
7
Spinal microcircuits go through multiphasic homeostatic compensations in a mouse model of motoneuron degeneration.
Cell Rep. 2024 Dec 24;43(12):115046. doi: 10.1016/j.celrep.2024.115046. Epub 2024 Dec 9.
9
Synaptic imbalance and increased inhibition impair motor function in SMA.
bioRxiv. 2024 Sep 1:2024.08.30.610545. doi: 10.1101/2024.08.30.610545.
10
Neurochemical atlas of the rabbit spinal cord.
Brain Struct Funct. 2024 Nov;229(8):2011-2027. doi: 10.1007/s00429-024-02842-z. Epub 2024 Aug 8.

本文引用的文献

1
Central effects of centripetal impulses in axons of spinal ventral roots.
J Neurophysiol. 1946 May;9:191-204. doi: 10.1152/jn.1946.9.3.191.
4
Primitive roles for inhibitory interneurons in developing frog spinal cord.
J Neurosci. 2004 Jun 23;24(25):5840-8. doi: 10.1523/JNEUROSCI.1633-04.2004.
5
Engrailed-1 expression marks a primitive class of inhibitory spinal interneuron.
J Neurosci. 2004 Jun 23;24(25):5827-39. doi: 10.1523/JNEUROSCI.5342-03.2004.
6
Activity-dependent homeostatic specification of transmitter expression in embryonic neurons.
Nature. 2004 Jun 3;429(6991):523-30. doi: 10.1038/nature02518.
8
Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates.
Nat Neurosci. 2004 May;7(5):510-7. doi: 10.1038/nn1221. Epub 2004 Apr 4.
9
Pax6 and engrailed 1 regulate two distinct aspects of renshaw cell development.
J Neurosci. 2004 Feb 4;24(5):1255-64. doi: 10.1523/JNEUROSCI.3187-03.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验