Suppr超能文献

大肠杆菌锰超氧化物歧化酶金属结合机制的动力学分析

Kinetic analysis of the metal binding mechanism of Escherichia coli manganese superoxide dismutase.

作者信息

Whittaker Mei M, Mizuno Kazunori, Bächinger Hans Peter, Whittaker James W

机构信息

Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, Oregon 97006, USA.

出版信息

Biophys J. 2006 Jan 15;90(2):598-607. doi: 10.1529/biophysj.105.071308. Epub 2005 Oct 28.

Abstract

The acquisition of a catalytic metal cofactor is an essential step in the maturation of every metalloenzyme, including manganese superoxide dismutase (MnSOD). In this study, we have taken advantage of the quenching of intrinsic protein fluorescence by bound metal ions to continuously monitor the metallation reaction of Escherichia coli MnSOD in vitro, permitting a detailed kinetic characterization of the uptake mechanism. Apo-MnSOD metallation kinetics are "gated", zero order in metal ion for both the native Mn2+ and a nonnative metal ion (Co2+) used as a spectroscopic probe to provide greater sensitivity to metal binding. Cobalt-binding time courses measured over a range of temperatures (35-50 degrees C) reveal two exponential kinetic processes (fast and slow phases) associated with metal binding. The amplitude of the fast phase increases rapidly as the temperature is raised, reflecting the fraction of Apo-MnSOD in an "open" conformation, and its temperature dependence allows thermodynamic parameters to be estimated for the "closed" to "open" conformational transition. The sensitivity of the metallated protein to exogenously added chelator decreases progressively with time, consistent with annealing of an initially formed metalloprotein complex (k anneal = 0.4 min(-1)). A domain-separation mechanism is proposed for metal uptake by apo-MnSOD.

摘要

获得催化金属辅因子是包括锰超氧化物歧化酶(MnSOD)在内的每种金属酶成熟过程中的关键步骤。在本研究中,我们利用结合的金属离子对内在蛋白质荧光的淬灭作用,在体外连续监测大肠杆菌MnSOD的金属化反应,从而对摄取机制进行详细的动力学表征。脱辅基MnSOD的金属化动力学是“门控”的,对于用作光谱探针以提供更高金属结合灵敏度的天然Mn2+和非天然金属离子(Co2+),金属离子的反应均为零级。在一系列温度(35 - 50摄氏度)下测量的钴结合时间进程揭示了与金属结合相关的两个指数动力学过程(快速和慢速阶段)。快速阶段的幅度随温度升高而迅速增加,反映了处于“开放”构象的脱辅基MnSOD的比例,其温度依赖性允许估算“封闭”到“开放”构象转变的热力学参数。金属化蛋白质对外源添加螯合剂的敏感性随时间逐渐降低,这与最初形成的金属蛋白复合物的退火过程一致(退火速率常数k = 0.4 min(-1))。本文提出了一种脱辅基MnSOD摄取金属的结构域分离机制。

相似文献

1
Kinetic analysis of the metal binding mechanism of Escherichia coli manganese superoxide dismutase.
Biophys J. 2006 Jan 15;90(2):598-607. doi: 10.1529/biophysj.105.071308. Epub 2005 Oct 28.
2
Calorimetric studies on the tight binding metal interactions of Escherichia coli manganese superoxide dismutase.
J Biol Chem. 2004 Jun 25;279(26):27339-44. doi: 10.1074/jbc.M400813200. Epub 2004 Apr 13.
3
Subunit dissociation and metal binding by Escherichia coli apo-manganese superoxide dismutase.
Arch Biochem Biophys. 2011 Jan 15;505(2):213-25. doi: 10.1016/j.abb.2010.10.021. Epub 2010 Oct 31.
4
In vitro metal uptake by recombinant human manganese superoxide dismutase.
Arch Biochem Biophys. 2009 Nov;491(1-2):69-74. doi: 10.1016/j.abb.2009.09.003. Epub 2009 Sep 13.
6
The irony of manganese superoxide dismutase.
Biochem Soc Trans. 2003 Dec;31(Pt 6):1318-21. doi: 10.1042/bst0311318.
7
Conformationally gated metal uptake by apomanganese superoxide dismutase.
Biochemistry. 2008 Nov 4;47(44):11625-36. doi: 10.1021/bi8015636. Epub 2008 Oct 9.
10
Structural and kinetic study of differences between human and Escherichia coli manganese superoxide dismutases.
Biochemistry. 2007 Dec 25;46(51):14830-7. doi: 10.1021/bi7014103. Epub 2007 Nov 29.

引用本文的文献

1
A riboswitch-controlled TerC family transporter Alx tunes intracellular manganese concentration in at alkaline pH.
J Bacteriol. 2024 Jul 25;206(7):e0016824. doi: 10.1128/jb.00168-24. Epub 2024 Jun 13.
2
Identifying Metal Binding Sites in Proteins Using Homologous Structures, the MADE Approach.
J Chem Inf Model. 2023 Aug 28;63(16):5204-5219. doi: 10.1021/acs.jcim.3c00558. Epub 2023 Aug 9.
3
Why is manganese so valuable to bacterial pathogens?
Front Cell Infect Microbiol. 2023 Feb 3;13:943390. doi: 10.3389/fcimb.2023.943390. eCollection 2023.
4
Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism.
Metallomics. 2019 Jan 23;11(1):183-200. doi: 10.1039/c8mt00239h.
5
A Single Outer-Sphere Mutation Stabilizes apo-Mn Superoxide Dismutase by 35 °C and Disfavors Mn Binding.
Biochemistry. 2017 Jul 25;56(29):3787-3799. doi: 10.1021/acs.biochem.7b00175. Epub 2017 Jul 13.
6
Superoxide dismutases and superoxide reductases.
Chem Rev. 2014 Apr 9;114(7):3854-918. doi: 10.1021/cr4005296. Epub 2014 Apr 1.
7
Metallation state of human manganese superoxide dismutase expressed in Saccharomyces cerevisiae.
Arch Biochem Biophys. 2012 Jul 15;523(2):191-7. doi: 10.1016/j.abb.2012.04.016. Epub 2012 Apr 26.
8
Battles with iron: manganese in oxidative stress protection.
J Biol Chem. 2012 Apr 20;287(17):13541-8. doi: 10.1074/jbc.R111.312181. Epub 2012 Jan 13.
9
Subunit dissociation and metal binding by Escherichia coli apo-manganese superoxide dismutase.
Arch Biochem Biophys. 2011 Jan 15;505(2):213-25. doi: 10.1016/j.abb.2010.10.021. Epub 2010 Oct 31.
10
Structure and metal loading of a soluble periplasm cuproprotein.
J Biol Chem. 2010 Oct 15;285(42):32504-11. doi: 10.1074/jbc.M110.153080. Epub 2010 Aug 10.

本文引用的文献

1
Lactoferrin and iron: structural and dynamic aspects of binding and release.
Biometals. 2004 Jun;17(3):209-16. doi: 10.1023/b:biom.0000027694.40260.70.
2
Calorimetric studies on the tight binding metal interactions of Escherichia coli manganese superoxide dismutase.
J Biol Chem. 2004 Jun 25;279(26):27339-44. doi: 10.1074/jbc.M400813200. Epub 2004 Apr 13.
3
Formation and insertion of the nitrogenase iron-molybdenum cofactor.
Chem Rev. 2004 Feb;104(2):1159-73. doi: 10.1021/cr020608l.
4
Biosynthesis of metal sites.
Chem Rev. 2004 Feb;104(2):509-25. doi: 10.1021/cr020613p.
5
The irony of manganese superoxide dismutase.
Biochem Soc Trans. 2003 Dec;31(Pt 6):1318-21. doi: 10.1042/bst0311318.
6
Copper chaperones: personal escorts for metal ions.
J Bioenerg Biomembr. 2002 Oct;34(5):373-9. doi: 10.1023/a:1021202119942.
7
Metal insertion into NiFe-hydrogenases.
Biochem Soc Trans. 2002 Aug;30(4):674-80. doi: 10.1042/bst0300674.
8
Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration.
J Biol Chem. 2001 Apr 13;276(15):11631-8. doi: 10.1074/jbc.M009429200. Epub 2001 Jan 4.
10
Structure and chemistry of the copper chaperone proteins.
Curr Opin Chem Biol. 2000 Apr;4(2):140-7. doi: 10.1016/s1367-5931(99)00066-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验