Miller Anne-Frances, Wang Ting
Department of Chemistry, University of Kentucky , 505 Rose Street, Lexington, Kentucky 40506-0055, United States.
Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky , 741 South Limestone Street, Lexington, Kentucky 40536-0509, United States.
Biochemistry. 2017 Jul 25;56(29):3787-3799. doi: 10.1021/acs.biochem.7b00175. Epub 2017 Jul 13.
The catalytic active site of Mn-specific superoxide dismutase (MnSOD) is organized around a redox-active Mn ion. The most highly conserved difference between MnSODs and the homologous FeSODs is the origin of a Gln in the second coordination sphere. In MnSODs it derives from the C-terminal domain whereas in FeSODs it derives from the N-terminal domain, yet its side chain occupies almost superimposable positions in the active sites of these two types of SODs. Mutation of this Gln69 to Glu in Escherichia coli FeSOD increased the Fe reduction midpoint potential by >0.6 V without disrupting the structure or Fe binding [ Yikilmaz, E., Rodgers, D. W., and Miller, A.-F. ( 2006 ) Biochemistry 45 ( 4 ), 1151 - 1161 ]. We now describe the analogous Q146E mutant of MnSOD, explaining its low Mn content in terms increased stability of the apo-Mn protein. In 0.8 M guanidinium HCl, Q146E-apoMnSOD displays an apparent melting midpoint temperature (T) 35 °C higher that of wild-type (WT) apoMnSOD, whereas the T of WT-holoMnSOD is only 20 °C higher than that of WT-apoMnSOD. In contrast, the T attributed to Q146E-holoMnSOD is 40 °C lower than that of Q146E-apoMnSOD. Thus, our data refute the notion that the WT residues optimize the structural stability of the protein and instead are consistent with conservation on the basis of enzyme function and therefore ability to bind metal ion. We propose that the WT-MnSOD protein conserves a destabilizing amino acid at position 146 as part of a strategy to favor metal ion binding.
锰特异性超氧化物歧化酶(MnSOD)的催化活性位点围绕一个具有氧化还原活性的锰离子构建。MnSOD与同源的铁超氧化物歧化酶(FeSOD)之间最高度保守的差异在于第二配位层中一个谷氨酰胺的来源。在MnSOD中,它源自C末端结构域,而在FeSOD中,它源自N末端结构域,但其侧链在这两种类型的超氧化物歧化酶的活性位点中占据几乎重叠的位置。在大肠杆菌FeSOD中将这个Gln69突变为Glu,在不破坏结构或铁结合的情况下,使铁还原中点电位增加了>0.6 V [Yikilmaz, E., Rodgers, D. W., and Miller, A.-F. (2006) Biochemistry 45 (4), 1151 - 1161]。我们现在描述了MnSOD的类似Q146E突变体,从脱辅基锰蛋白稳定性增加的角度解释了其低锰含量。在0.8 M盐酸胍中,Q146E-脱辅基MnSOD的表观解链中点温度(T)比野生型(WT)脱辅基MnSOD高35℃,而WT-全酶MnSOD的T仅比WT-脱辅基MnSOD高20℃。相比之下,归因于Q146E-全酶MnSOD的T比Q146E-脱辅基MnSOD低40℃。因此,我们的数据反驳了野生型残基优化蛋白质结构稳定性的观点,相反,这与基于酶功能以及因此与结合金属离子能力的保守性是一致的。我们提出,野生型MnSOD蛋白在第146位保留一个使结构不稳定的氨基酸,作为有利于金属离子结合策略的一部分。