Suppr超能文献

一种用于在基因关联研究中检测单倍型-单倍型和单倍型-环境相互作用的贝叶斯层次模型。

A Bayesian hierarchical model for detecting haplotype-haplotype and haplotype-environment interactions in genetic association studies.

作者信息

Li Jun, Zhang Kui, Yi Nengjun

机构信息

Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0022, USA.

出版信息

Hum Hered. 2011;71(3):148-60. doi: 10.1159/000324841. Epub 2011 Jul 20.

Abstract

OBJECTIVE

Genetic association studies based on haplotypes are powerful in the discovery and characterization of the genetic basis of complex human diseases. However, statistical methods for detecting haplotype-haplotype and haplotype-environment interactions have not yet been fully developed owing to the difficulties encountered: large numbers of potential haplotypes and unknown haplotype pairs. Furthermore, methods for detecting the association between rare haplotypes and disease have not kept pace with their counterpart of common haplotypes.

METHODS/RESULTS: We herein propose an efficient and robust method to tackle these problems based on a Bayesian hierarchical generalized linear model. Our model simultaneously fits environmental effects, main effects of numerous common and rare haplotypes, and haplotype-haplotype and haplotype-environment interactions. The key to the approach is the use of a continuous prior distribution on coefficients that favors sparseness in the fitted model and facilitates computation. We develop a fast expectation-maximization algorithm to fit models by estimating posterior modes of coefficients. We incorporate our algorithm into the iteratively weighted least squares for classical generalized linear models as implemented in the R package glm. We evaluate the proposed method and compare its performance to existing methods on extensive simulated data.

CONCLUSION

The results show that the proposed method performs well under all situations and is more powerful than existing approaches.

摘要

目的

基于单倍型的基因关联研究在发现和表征复杂人类疾病的遗传基础方面具有强大作用。然而,由于存在大量潜在单倍型和未知单倍型对这些困难,用于检测单倍型 - 单倍型和单倍型 - 环境相互作用的统计方法尚未得到充分发展。此外,检测罕见单倍型与疾病之间关联的方法也未能跟上常见单倍型方法的步伐。

方法/结果:我们在此提出一种基于贝叶斯分层广义线性模型的高效且稳健的方法来解决这些问题。我们的模型同时拟合环境效应、众多常见和罕见单倍型的主效应以及单倍型 - 单倍型和单倍型 - 环境相互作用。该方法的关键在于对系数使用连续先验分布,这有利于拟合模型的稀疏性并便于计算。我们开发了一种快速期望最大化算法,通过估计系数的后验模式来拟合模型。我们将我们的算法纳入R包glm中实现的经典广义线性模型的迭代加权最小二乘法中。我们在大量模拟数据上评估了所提出的方法,并将其性能与现有方法进行了比较。

结论

结果表明,所提出的方法在所有情况下都表现良好,并且比现有方法更具效力。

相似文献

6
Detecting local haplotype sharing and haplotype association.检测局部单倍型共享和单倍型关联。
Genetics. 2014 Jul;197(3):823-38. doi: 10.1534/genetics.114.164814. Epub 2014 May 8.

引用本文的文献

5
Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.用于多数量性状上位性分析的功能回归模型
PLoS Genet. 2016 Apr 22;12(4):e1005965. doi: 10.1371/journal.pgen.1005965. eCollection 2016 Apr.

本文引用的文献

4
TGFBR1 haplotypes and risk of non-small-cell lung cancer.转化生长因子β受体1单倍型与非小细胞肺癌风险
Cancer Res. 2009 Sep 1;69(17):7046-52. doi: 10.1158/0008-5472.CAN-08-4602. Epub 2009 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验