Suppr超能文献

通过高压晶体学和模拟观察到的非极性蛋白质腔的协同水填充

Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation.

作者信息

Collins Marcus D, Hummer Gerhard, Quillin Michael L, Matthews Brian W, Gruner Sol M

机构信息

Department of Physics, Cornell University, Ithaca, NY 14853, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16668-71. doi: 10.1073/pnas.0508224102. Epub 2005 Nov 3.

Abstract

Formation of a water-expelling nonpolar core is the paradigm of protein folding and stability. Although experiment largely confirms this picture, water buried in "hydrophobic" cavities is required for the function of some proteins. Hydration of the protein core has also been suggested as the mechanism of pressure-induced unfolding. We therefore are led to ask whether even the most nonpolar protein core is truly hydrophobic (i.e., water-repelling). To answer this question we probed the hydration of an approximately 160-A(3), highly hydrophobic cavity created by mutation in T4 lysozyme by using high-pressure crystallography and molecular dynamics simulation. We show that application of modest pressure causes approximately four water molecules to enter the cavity while the protein itself remains essentially unchanged. The highly cooperative filling is primarily due to a small change in bulk water activity, which implies that changing solvent conditions or, equivalently, cavity polarity can dramatically affect interior hydration of proteins and thereby influence both protein activity and folding.

摘要

形成一个排斥水的非极性核心是蛋白质折叠和稳定性的范例。尽管实验在很大程度上证实了这一情况,但某些蛋白质发挥功能需要有埋在 “疏水” 腔内的水。蛋白质核心的水合作用也被认为是压力诱导去折叠的机制。因此我们不禁要问,即使是最非极性的蛋白质核心是否真的是疏水的(即排斥水的)。为了回答这个问题,我们通过高压晶体学和分子动力学模拟,探究了由T4溶菌酶突变产生的一个约160埃³的高度疏水腔的水合作用。我们发现施加适度压力会使大约四个水分子进入腔内,而蛋白质本身基本保持不变。高度协同的填充主要是由于本体水活性的微小变化,这意味着改变溶剂条件或者等效地改变腔的极性,会显著影响蛋白质的内部水合作用,从而影响蛋白质活性和折叠。

相似文献

1
Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation.
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16668-71. doi: 10.1073/pnas.0508224102. Epub 2005 Nov 3.
2
Water in the polar and nonpolar cavities of the protein interleukin-1β.
J Phys Chem B. 2010 Dec 16;114(49):16290-7. doi: 10.1021/jp108731r. Epub 2010 Nov 3.
4
Role of cavities and hydration in the pressure unfolding of T4 lysozyme.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13846-51. doi: 10.1073/pnas.1410655111. Epub 2014 Sep 8.
5
Water clusters in nonpolar cavities.
Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17002-5. doi: 10.1073/pnas.0407968101. Epub 2004 Nov 30.
6
Use of experimental crystallographic phases to examine the hydration of polar and nonpolar cavities in T4 lysozyme.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14406-11. doi: 10.1073/pnas.0806307105. Epub 2008 Sep 9.
8
Hydration in protein crystallography.
Prog Biophys Mol Biol. 1995;64(2-3):105-19. doi: 10.1016/0079-6107(95)00012-7.
10
Properties of the protein matrix revealed by the free energy of cavity formation.
Structure. 1996 Dec 15;4(12):1517-29. doi: 10.1016/s0969-2126(96)00157-8.

引用本文的文献

3
A pressure-jump EPR system to monitor millisecond conformational exchange rates of spin-labeled proteins.
bioRxiv. 2024 May 11:2024.05.07.593074. doi: 10.1101/2024.05.07.593074.
4
Pushed to extremes: distinct effects of high temperature versus pressure on the structure of STEP.
Commun Biol. 2024 Jan 12;7(1):59. doi: 10.1038/s42003-023-05609-0.
5
Changes in the hydrophobic network of the FliG domain induce rotational switching of the flagellar motor.
iScience. 2023 Jul 11;26(8):107320. doi: 10.1016/j.isci.2023.107320. eCollection 2023 Aug 18.
6
Real-space imaging of periodic nanotextures in thin films via phasing of diffraction data.
Proc Natl Acad Sci U S A. 2023 Jul 11;120(28):e2303312120. doi: 10.1073/pnas.2303312120. Epub 2023 Jul 6.
8
On the Nature of Guest Complexation in Water: Triggered Wetting-Water-Mediated Binding.
J Phys Chem B. 2022 Apr 28;126(16):3150-3160. doi: 10.1021/acs.jpcb.2c00628. Epub 2022 Apr 19.
9
Temperature artifacts in protein structures bias ligand-binding predictions.
Chem Sci. 2021 Jul 13;12(34):11275-11293. doi: 10.1039/d1sc02751d. eCollection 2021 Sep 1.
10
Protein unfolded states populated at high and ambient pressure are similarly compact.
Biophys J. 2021 Jun 15;120(12):2592-2598. doi: 10.1016/j.bpj.2021.04.031. Epub 2021 May 4.

本文引用的文献

1
Solutes probe hydration in specific association of cyclodextrin and adamantane.
J Am Chem Soc. 2005 Feb 23;127(7):2184-90. doi: 10.1021/ja045541t.
2
Water clusters in nonpolar cavities.
Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17002-5. doi: 10.1073/pnas.0407968101. Epub 2004 Nov 30.
3
Stabilization of internal charges in a protein: water penetration or conformational change?
Biophys J. 2004 Dec;87(6):3982-94. doi: 10.1529/biophysj.104.048454. Epub 2004 Sep 17.
4
Hydrophobic collapse in multidomain protein folding.
Science. 2004 Sep 10;305(5690):1605-9. doi: 10.1126/science.1101176.
6
Detection, delineation, measurement and display of cavities in macromolecular structures.
Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):178-85. doi: 10.1107/S0907444993011333.
7
Hydration free energies and entropies for water in protein interiors.
J Am Chem Soc. 2004 Jun 30;126(25):7991-8000. doi: 10.1021/ja049701c.
10
Probing substates in sperm whale myoglobin using high-pressure crystallography.
Structure. 2002 Jan;10(1):51-60. doi: 10.1016/s0969-2126(01)00699-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验