Suppr超能文献

蛋白质白细胞介素-1β的极性和非极性腔中的水。

Water in the polar and nonpolar cavities of the protein interleukin-1β.

机构信息

Department of Chemistry, University of Maine, Orono, Maine 04469, United States.

出版信息

J Phys Chem B. 2010 Dec 16;114(49):16290-7. doi: 10.1021/jp108731r. Epub 2010 Nov 3.

Abstract

Water in the protein interior serves important structural and functional roles and is also increasingly recognized as a relevant factor in drug binding. The nonpolar cavity in the protein interleukin-1β has been reported to be filled by water on the basis of some experiments and simulations and to be empty on the basis of others. Here we study the thermodynamics of filling the central nonpolar cavity and the four polar cavities of interleukin-1β by molecular dynamics simulation. We use different water models (TIP3P and SPC/E) and protein force fields (amber94 and amber03) to calculate the semigrand partition functions term by term that quantify the hydration equilibria. We consistently find that water in the central nonpolar cavity is thermodynamically unstable, independent of force field and water model. The apparent reason is the relatively small size of the cavity, with a volume less than ∼80 Å(3). Our results are consistent with the most recent X-ray crystallographic and simulation studies but disagree with an earlier interpretation of nuclear magnetic resonance (NMR) experiments probing protein-water interactions. We show that, at least semiquantitatively, the measured nuclear Overhauser effects indicating the proximity of water to the methyl groups lining the nonpolar cavity can, in all likelihood, be attributed to interactions with buried and surface water molecules near the cavity. The same methods applied to determine the occupancy of the polar cavities show that they are filled by the same number of water molecules observed in crystallography, thereby validating the theoretical and simulation methods used to study the water occupancy in the nonpolar protein cavity.

摘要

蛋白质内部的水在结构和功能上都起着重要作用,而且越来越多的人认为它也是药物结合的一个相关因素。根据一些实验和模拟结果,白细胞介素-1β 蛋白质中的非极性空腔被报道充满了水,而根据其他一些结果则显示为空。在这里,我们通过分子动力学模拟研究了填充白细胞介素-1β 的中心非极性空腔和四个极性空腔的热力学。我们使用不同的水分子模型(TIP3P 和 SPC/E)和蛋白质力场(amber94 和 amber03),逐项计算半巨配分函数,量化水合平衡。我们一致发现,中央非极性空腔中的水在热力学上是不稳定的,这与力场和水分子模型无关。明显的原因是空腔的相对较小尺寸,体积小于约 80Å3。我们的结果与最近的 X 射线晶体学和模拟研究一致,但与探测蛋白质-水相互作用的核磁共振(NMR)实验的早期解释不一致。我们表明,至少在半定量上,表明水与排列在非极性空腔中的甲基基团接近的测量核奥弗豪瑟效应很可能归因于与空腔附近埋藏和表面水分子的相互作用。应用相同的方法来确定极性空腔的占有率表明,它们被晶体学中观察到的相同数量的水分子所填充,从而验证了用于研究非极性蛋白质空腔中水占有率的理论和模拟方法。

相似文献

1
Water in the polar and nonpolar cavities of the protein interleukin-1β.
J Phys Chem B. 2010 Dec 16;114(49):16290-7. doi: 10.1021/jp108731r. Epub 2010 Nov 3.
2
A review about nothing: are apolar cavities in proteins really empty?
Protein Sci. 2009 Mar;18(3):494-502. doi: 10.1002/pro.61.
3
Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation.
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16668-71. doi: 10.1073/pnas.0508224102. Epub 2005 Nov 3.
4
Use of experimental crystallographic phases to examine the hydration of polar and nonpolar cavities in T4 lysozyme.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14406-11. doi: 10.1073/pnas.0806307105. Epub 2008 Sep 9.
6
Water clusters in nonpolar cavities.
Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17002-5. doi: 10.1073/pnas.0407968101. Epub 2004 Nov 30.
8
Metastable water clusters in the nonpolar cavities of the thermostable protein tetrabrachion.
J Am Chem Soc. 2007 Jun 13;129(23):7369-77. doi: 10.1021/ja070456h. Epub 2007 May 18.
9
Determination of solvent content in cavities in IL-1beta using experimentally phased electron density.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19749-53. doi: 10.1073/pnas.0609442104. Epub 2006 Dec 18.

引用本文的文献

1
On the Nature of Guest Complexation in Water: Triggered Wetting-Water-Mediated Binding.
J Phys Chem B. 2022 Apr 28;126(16):3150-3160. doi: 10.1021/acs.jpcb.2c00628. Epub 2022 Apr 19.
3
Proximal charge effects on guest binding to a non-polar pocket.
Chem Sci. 2020 Mar 17;11(14):3656-3663. doi: 10.1039/c9sc06268h. eCollection 2020 Apr 14.
4
Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution.
Nat Chem. 2020 Jul;12(7):589-594. doi: 10.1038/s41557-020-0458-8. Epub 2020 May 18.
5
Water in protein hydration and ligand recognition.
J Mol Recognit. 2019 Dec;32(12):e2810. doi: 10.1002/jmr.2810. Epub 2019 Aug 27.
6
The consequences of cavity creation on the folding landscape of a repeat protein depend upon context.
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8153-E8161. doi: 10.1073/pnas.1807379115. Epub 2018 Aug 13.
7
Water Determines the Structure and Dynamics of Proteins.
Chem Rev. 2016 Jul 13;116(13):7673-97. doi: 10.1021/acs.chemrev.5b00664. Epub 2016 May 17.
8
STABILITY OF A CYLINDRICAL SOLUTE-SOLVENT INTERFACE: EFFECT OF GEOMETRY, ELECTROSTATICS, AND HYDRODYNAMICS.
SIAM J Appl Math. 2015;75(3):907-928. doi: 10.1137/140972093. Epub 2015 May 5.
10
Characterization of a novel water pocket inside the human Cx26 hemichannel structure.
Biophys J. 2014 Aug 5;107(3):599-612. doi: 10.1016/j.bpj.2014.05.037.

本文引用的文献

2
A review about nothing: are apolar cavities in proteins really empty?
Protein Sci. 2009 Mar;18(3):494-502. doi: 10.1002/pro.61.
3
Water in nonpolar confinement: from nanotubes to proteins and beyond.
Annu Rev Phys Chem. 2008;59:713-40. doi: 10.1146/annurev.physchem.59.032607.093815.
4
The entropic cost of bound water in crystals and biomolecules.
Science. 1994 Apr 29;264(5159):670. doi: 10.1126/science.264.5159.670.
5
Metastable water clusters in the nonpolar cavities of the thermostable protein tetrabrachion.
J Am Chem Soc. 2007 Jun 13;129(23):7369-77. doi: 10.1021/ja070456h. Epub 2007 May 18.
7
Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography.
J Mol Biol. 2007 Mar 30;367(3):752-63. doi: 10.1016/j.jmb.2006.12.021. Epub 2006 Dec 15.
8
Determination of solvent content in cavities in IL-1beta using experimentally phased electron density.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19749-53. doi: 10.1073/pnas.0609442104. Epub 2006 Dec 18.
9
Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation.
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16668-71. doi: 10.1073/pnas.0508224102. Epub 2005 Nov 3.
10
The Amber biomolecular simulation programs.
J Comput Chem. 2005 Dec;26(16):1668-88. doi: 10.1002/jcc.20290.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验