Suppr超能文献

利用分子技术表征草地土壤中植物与根际平面细菌群落之间的联系。

Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques.

作者信息

Nunan Naoise, Daniell Timothy J, Singh Brajesh K, Papert Artemis, McNicol James W, Prosser James I

机构信息

Biomathematics and Statistics Scotland, Scottish Crop Research Institute, Dundee, United Kingdom.

出版信息

Appl Environ Microbiol. 2005 Nov;71(11):6784-92. doi: 10.1128/AEM.71.11.6784-6792.2005.

Abstract

Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed "bulk" rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study was to test the hypothesis that plant species was a major driver for bacterial rhizoplane community composition on individual plant roots. DNA extracted from individual roots was used to determine plant identity, by analysis of the plastid tRNA leucine (trnL) UAA gene intron, and plant-related bacterial communities. Bacterial communities were characterized by analysis of PCR-amplified 16S rRNA genes using two fingerprinting methods: terminal restriction fragment length polymorphisms (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Links between plant and bacterial rhizoplane communities could not be detected by visual examination of T-RFLP patterns or DGGE banding profiles. Statistical analysis of fingerprint patterns did not reveal a relationship between bacterial community composition and plant species but did demonstrate an influence of plant community composition. The data also indicated that topography and other, uncharacterized, environmental factors are important in driving bacterial community composition in grassland soils. T-RFLP had greater potential resolving power than DGGE, but findings from the two methods were not significantly different.

摘要

对草原根际土壤的分子分析表明,其细菌群落复杂多样,因此难以检测植物与细菌群落之间的联系。然而,这些研究分析的是“大量”根际土壤,而非根面群落,根面群落通过利用根系分泌物与植物进行最密切的相互作用。本研究的目的是检验以下假设:植物物种是单个植物根系上细菌根面群落组成的主要驱动因素。从单个根系提取的DNA用于通过分析质体亮氨酸转运RNA(trnL)UAA基因内含子来确定植物身份以及与植物相关的细菌群落。使用两种指纹图谱方法对PCR扩增的16S rRNA基因进行分析,从而对细菌群落进行表征:末端限制性片段长度多态性(T-RFLP)和变性梯度凝胶电泳(DGGE)。通过目视检查T-RFLP图谱或DGGE条带图谱无法检测到植物与细菌根面群落之间的联系。对指纹图谱的统计分析未揭示细菌群落组成与植物物种之间的关系,但确实证明了植物群落组成的影响。数据还表明,地形和其他未表征的环境因素对驱动草原土壤中的细菌群落组成很重要。T-RFLP比DGGE具有更大的潜在分辨能力,但两种方法的结果没有显著差异。

相似文献

1
Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques.
Appl Environ Microbiol. 2005 Nov;71(11):6784-92. doi: 10.1128/AEM.71.11.6784-6792.2005.
4
Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland.
Appl Environ Microbiol. 2002 Apr;68(4):1854-63. doi: 10.1128/AEM.68.4.1854-1863.2002.
7
Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots.
Environ Microbiol. 2008 Feb;10(2):534-41. doi: 10.1111/j.1462-2920.2007.01474.x. Epub 2007 Dec 13.
8
Impact of flooding on soil bacterial communities associated with poplar (Populus sp.) trees.
FEMS Microbiol Ecol. 2005 Aug 1;53(3):401-15. doi: 10.1016/j.femsec.2005.01.009.
9
Transgenic tobacco revealing altered bacterial diversity in the rhizosphere during early plant development.
Antonie Van Leeuwenhoek. 2008 May;93(4):415-24. doi: 10.1007/s10482-007-9219-6. Epub 2008 Jan 8.

引用本文的文献

1
Drivers of fungal and bacterial communities in ectomycorrhizospheres of birch, oak, and pine in a former uranium mining site, Ronneburg, Germany.
Environ Sci Pollut Res Int. 2025 Apr;32(17):10786-10799. doi: 10.1007/s11356-025-36330-6. Epub 2025 Apr 2.
3
Exploring the Frequency and Distribution of Ecological Non-monotonicity in Associations among Ecosystem Constituents.
Ecosystems. 2023;26(8):1819-1840. doi: 10.1007/s10021-023-00867-9. Epub 2023 Aug 14.
6
Limited effect of radial oxygen loss on ammonia oxidizers in Typha angustifolia root hairs.
Sci Rep. 2020 Sep 24;10(1):15694. doi: 10.1038/s41598-020-72653-9.
7
Tree Root Zone Microbiome: Exploring the Magnitude of Environmental Conditions and Host Tree Impact.
Front Microbiol. 2020 Apr 23;11:749. doi: 10.3389/fmicb.2020.00749. eCollection 2020.
8
Rhizosphere Microbial Community Structure Is Selected by Habitat but Not Plant Species in Two Tropical Seagrass Beds.
Front Microbiol. 2020 Mar 4;11:161. doi: 10.3389/fmicb.2020.00161. eCollection 2020.
9
Effects of a Simulated Acute Oil Spillage on Bacterial Communities from Arctic and Antarctic Marine Sediments.
Microorganisms. 2019 Nov 30;7(12):632. doi: 10.3390/microorganisms7120632.
10
Guild Composition of Root-Associated Bacteria Changes with Increased Soil Contamination.
Microb Ecol. 2019 Aug;78(2):416-427. doi: 10.1007/s00248-019-01326-6. Epub 2019 Jan 30.

本文引用的文献

1
Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field.
Oecologia. 2000 Nov;125(3):420-427. doi: 10.1007/s004420000456. Epub 2000 Nov 1.
2
Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil.
FEMS Microbiol Ecol. 2003 May 1;44(2):203-15. doi: 10.1016/S0168-6496(03)00027-8.
3
Spatial structure in soil chemical and microbiological properties in an upland grassland.
FEMS Microbiol Ecol. 2004 Aug 1;49(2):191-205. doi: 10.1016/j.femsec.2004.03.005.
4
Spatial scales of soil bacterial diversity--the size of a clone.
FEMS Microbiol Ecol. 2004 May 1;48(2):119-27. doi: 10.1016/j.femsec.2004.01.010.
5
Comparison of PCR primer-based strategies for characterization of ammonia oxidizer communities in environmental samples.
FEMS Microbiol Ecol. 2006 Jun;56(3):482-93. doi: 10.1111/j.1574-6941.2006.00080.x.
6
Spatial analysis of archaeal community structure in grassland soil.
Appl Environ Microbiol. 2003 Dec;69(12):7420-9. doi: 10.1128/AEM.69.12.7420-7429.2003.
8
Diversity and dynamics of microbial communities in soils from agro-ecosystems.
Environ Microbiol. 2003 Jun;5(6):441-52. doi: 10.1046/j.1462-2920.2003.00404.x.
9
Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils.
Appl Environ Microbiol. 2003 Mar;69(3):1800-9. doi: 10.1128/AEM.69.3.1800-1809.2003.
10
Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms.
Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):509-20. doi: 10.1023/a:1020565523615.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验