Suppr超能文献

Single evoked potential reconstruction by means of wavelet transform.

作者信息

Bartnik E A, Blinowska K J, Durka P J

机构信息

Faculty of Physics, Warsaw University, Poland.

出版信息

Biol Cybern. 1992;67(2):175-81. doi: 10.1007/BF00201024.

Abstract

We would like to propose a method of single evoked potential (EP) extraction free from assumptions and based on a novel approach--the wavelet representation of the signal. Wavelets were introduced by Grossman and Morlet in 1984. The method is based on the multiresolution signal decomposition. Wavelets are already used for speech recognition, geophysics investigations and fractal analysis. This method seems to be a useful improvement upon Fourier Transform analysis, since it provides simultaneous information on frequency and time localization of the signal. We would like to introduce wavelet formalism for the first time to brain signal analysis. One of the most important problems in this field is the analysis of evoked potentials. This signal has an amplitude several times smaller than EEG, therefore stimulus-synchronized averaging is commonly used. This method is based on several assumptions. Namely it is postulated that: 1) EP are characterized by a deterministic repeatable pattern, 2) EEG has purely stochastic character, 3) EEG and EP are independent. These assumptions have been challenged e.g. the variability of the EP pattern was demonstrated by John (1973) by means of factor analysis. In view of the works of Sayers et al. (1974) and Başar (1988) EP reflects the reorganization of the spontaneous activity under the influence of a stimulus and it is connected with the redistribution of EEG phases. Several attempts to overcome the limitation of the averaging method have been made. Heintze and Künkel (1984) used an autoregressive moving average (ARMA) model to extract evoked potentials from 2 segments. This was possible under two conditions: high signal to noise ratio and clear separation of the EEG and EP spectra.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验