Suppr超能文献

神经肌肉骨骼建模:根据神经指令测量值估计肌肉力量、关节力矩和运动。

Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command.

作者信息

Buchanan Thomas S, Lloyd David G, Manal Kurt, Besier Thor F

机构信息

Center for Biomedical Engineering Research, Dept. of Mechanical Engineering, University of Delaware, Newark, DE 19716;

出版信息

J Appl Biomech. 2004 Nov;20(4):367-95. doi: 10.1123/jab.20.4.367.

Abstract

This paper provides an overview of forward dynamic neuromusculoskeletal modeling. The aim of such models is to estimate or predict muscle forces, joint moments, and/or joint kinematics from neural signals. This is a four-step process. In the first step, muscle activation dynamics govern the transformation from the neural signal to a measure of muscle activation-a time varying parameter between 0 and 1. In the second step, muscle contraction dynamics characterize how muscle activations are transformed into muscle forces. The third step requires a model of the musculoskeletal geometry to transform muscle forces to joint moments. Finally, the equations of motion allow joint moments to be transformed into joint movements. Each step involves complex nonlinear relationships. The focus of this paper is on the details involved in the first two steps, since these are the most challenging to the biomechanician. The global process is then explained through applications to the study of predicting isometric elbow moments and dynamic knee kinetics.

摘要

本文概述了正向动力学神经肌肉骨骼建模。此类模型的目的是根据神经信号估计或预测肌肉力量、关节力矩和/或关节运动学。这是一个四步过程。第一步,肌肉激活动力学控制从神经信号到肌肉激活度量的转换——一个介于0和1之间的随时间变化的参数。第二步,肌肉收缩动力学描述肌肉激活如何转化为肌肉力量。第三步需要一个肌肉骨骼几何模型,将肌肉力量转化为关节力矩。最后,运动方程允许将关节力矩转化为关节运动。每一步都涉及复杂的非线性关系。本文重点关注前两步所涉及的细节,因为这对生物力学专家来说最具挑战性。然后通过预测等长肘关节力矩和动态膝关节动力学的研究应用来解释整个过程。

相似文献

引用本文的文献

4
Neuromusculoskeletal modeling of spasticity: A scoping review.痉挛的神经肌肉骨骼建模:一项范围综述。
PLoS One. 2025 May 14;20(5):e0320153. doi: 10.1371/journal.pone.0320153. eCollection 2025.
6
Parameter identification and sensitivity analysis of a lower-limb musculoskeletal model.下肢肌肉骨骼模型的参数识别与敏感性分析
Front Bioeng Biotechnol. 2025 Apr 14;13:1566381. doi: 10.3389/fbioe.2025.1566381. eCollection 2025.

本文引用的文献

1
Electromechanical delay: An experimental artifact.机电延迟:一个实验假象。
J Electromyogr Kinesiol. 1992;2(2):59-68. doi: 10.1016/1050-6411(92)90017-D.
2
The heat of activation and the heat of shortening in a muscle twitch.肌肉收缩时的活化热与缩短热。
Proc R Soc Lond B Biol Sci. 1949 Jun 23;136(883):195-211. doi: 10.1098/rspb.1949.0019.
3
The abrupt transition from rest to activity in muscle.肌肉从静止状态到活动状态的突然转变。
Proc R Soc Lond B Biol Sci. 1949 Oct;136(884):399-420. doi: 10.1098/rspb.1949.0033.
8
A real-time EMG-driven virtual arm.一个实时肌电图驱动的虚拟手臂。
Comput Biol Med. 2002 Jan;32(1):25-36. doi: 10.1016/s0010-4825(01)00024-5.
9
Dynamic optimization of human walking.人类行走的动态优化
J Biomech Eng. 2001 Oct;123(5):381-90. doi: 10.1115/1.1392310.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验