Suppr超能文献

Peroxyl radical-mediated hemolysis: role of lipid, protein and sulfhydryl oxidation.

作者信息

Sandhu I S, Ware K, Grisham M B

机构信息

Department of Physiology and Biophysics, Louisiana State University Medical Center, Shreveport 71130-3932.

出版信息

Free Radic Res Commun. 1992;16(2):111-22. doi: 10.3109/10715769209049164.

Abstract

The objective of this study was to define the relationship between peroxyl radical-mediated cytotoxicity and lipid, protein and sulfhydryl oxidation using human erythrocytes as the target mammalian cell. We found that incubation of human erythrocytes with the peroxyl radical generator 2,2' azobis (2-amidinopropane) hydrochloride (AAPH) resulted in a time and dose-dependent increase in hemolysis such that at 50 mM AAPH maximum hemolysis was achieved at 120 min. Hemolysis was inhibited by hypoxia and by the addition of certain water soluble free radical scavengers such as 5-aminosalicylic acid (5-ASA), 4-ASA, N-acetyl-5-ASA and dimethyl thiourea. Peroxyl radical-mediated hemolysis did not appear to involve significant peroxidation of erythrocyte lipids nor did they enhance protein oxidation at times preceding hemolysis. Peroxyl radicals did however, significantly reduce by approximately 80% the intracellular levels of GSH and inhibit by approximately 90% erythrocyte Ca(2+)-Mg2+ ATPase activity at times preceding the hemolytic event. Our data as well as others suggest that extracellular oxidants promote the oxidation of intracellular compounds by interacting with certain redox active membrane components. Depletion of intracellular GSH stores using diamide did not result in hemolysis suggesting that oxidation of GSH alone does not promote hemolysis. Taken together, our data suggest that neither GSH oxidation, lipid peroxidation nor protein oxidation alone can account for peroxyl radical-mediated hemolysis. It remains to be determined whether free radical-mediated inactivation of Ca(2+)-Mg2+ ATPase is an important mechanism in this process.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验