Suppr超能文献

使用伪瞬态延续法和有限元法求解非线性泊松-玻尔兹曼方程

Solution of the nonlinear Poisson-Boltzmann equation using pseudo-transient continuation and the finite element method.

作者信息

Shestakov A I, Milovich J L, Noy A

机构信息

Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

出版信息

J Colloid Interface Sci. 2002 Mar 1;247(1):62-79. doi: 10.1006/jcis.2001.8033.

Abstract

The nonlinear Poisson-Boltzmann (PB) equation is solved using Newton-Krylov iterations coupled with pseudo-transient continuation. The PB potential is used to compute the electrostatic energy and evaluate the force on a user-specified contour. The PB solver is embedded in a existing, 3D, massively parallel, unstructured-grid, finite element code. Either Dirichlet or mixed boundary conditions are allowed. The latter specifies surface charges, approximates far-field conditions, or linearizes conditions "regulating" the surface charge. Stability and robustness are proved using results for backward Euler differencing of diffusion equations. Potentials and energies of charged spheres and plates are computed and results compared to analysis. An approximation to the potential of the nonlinear, spherical charge is derived by combining two analytic formulae. The potential and force due to a conical probe interacting with a flat plate are computed for two types of boundary conditions: constant potential and constant charge. The second case is compared with direct force measurements by chemical force microscopy. The problem is highly nonlinear-surface potentials of the linear and nonlinear PB equations differ by over an order of magnitude. Comparison of the simulated and experimentally measured forces shows that approximately half of the surface carboxylic acid groups, of density 1/(0.2 nm2), ionize in the electrolyte implying surface charges of 0.4 C/m2, surface potentials of 0.27 V, and a force of 0.6 nN when the probe and plate are 8.7 nm apart.

摘要

采用牛顿-克里洛夫迭代法结合伪瞬态延拓求解非线性泊松-玻尔兹曼(PB)方程。PB势用于计算静电能,并评估作用于用户指定轮廓上的力。PB求解器嵌入到一个现有的三维大规模并行非结构化网格有限元代码中。允许使用狄利克雷边界条件或混合边界条件。后者指定表面电荷、近似远场条件或线性化“调节”表面电荷的条件。利用扩散方程向后欧拉差分的结果证明了稳定性和鲁棒性。计算了带电球体和平板的电势和能量,并将结果与分析结果进行了比较。通过组合两个解析公式,推导了非线性球形电荷电势的近似值。针对两种边界条件(恒定电势和恒定电荷)计算了锥形探针与平板相互作用时的电势和力。将第二种情况与化学力显微镜直接测量的力进行了比较。该问题具有高度非线性——线性和非线性PB方程的表面电势相差一个数量级以上。模拟力与实验测量力的比较表明,密度为1/(0.2 nm2)的表面羧酸基团中约有一半在电解质中电离,这意味着当探针与平板相距8.7 nm时,表面电荷为0.4 C/m2,表面电势为0.27 V,力为0.6 nN。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验