Suppr超能文献

分子表面场在溶剂化介电建模中的数值解释。

Numerical interpretation of molecular surface field in dielectric modeling of solvation.

机构信息

Chemical and Materials Physics Graduate Program, University of California, Irvine, California, 92697.

Department of Physics and Astronomy, University of California, Irvine, California, 92697.

出版信息

J Comput Chem. 2017 May 30;38(14):1057-1070. doi: 10.1002/jcc.24782. Epub 2017 Mar 20.

Abstract

Continuum solvent models, particularly those based on the Poisson-Boltzmann equation (PBE), are widely used in the studies of biomolecular structures and functions. Existing PBE developments have been mainly focused on how to obtain more accurate and/or more efficient numerical potentials and energies. However to adopt the PBE models for molecular dynamics simulations, a difficulty is how to interpret dielectric boundary forces accurately and efficiently for robust dynamics simulations. This study documents the implementation and analysis of a range of standard fitting schemes, including both one-sided and two-sided methods with both first-order and second-order Taylor expansions, to calculate molecular surface electric fields to facilitate the numerical calculation of dielectric boundary forces. These efforts prompted us to develop an efficient approximated one-dimensional method, which is to fit the surface field one dimension at a time, for biomolecular applications without much compromise in accuracy. We also developed a surface-to-atom force partition scheme given a level set representation of analytical molecular surfaces to facilitate their applications to molecular simulations. Testing of these fitting methods in the dielectric boundary force calculations shows that the second-order methods, including the one-dimensional method, consistently perform among the best in the molecular test cases. Finally, the timing analysis shows the approximated one-dimensional method is far more efficient than standard second-order methods in the PBE force calculations. © 2017 Wiley Periodicals, Inc.

摘要

连续溶剂模型,特别是基于泊松-玻尔兹曼方程(PBE)的模型,在生物分子结构和功能的研究中被广泛应用。现有的 PBE 发展主要集中在如何获得更准确和/或更有效的数值势和能量。然而,要将 PBE 模型应用于分子动力学模拟,一个困难是如何准确有效地解释介电边界力,以实现稳健的动力学模拟。本研究记录了一系列标准拟合方案的实现和分析,包括单边和双边方法,以及一阶和二阶泰勒展开,以计算分子表面电场,从而方便介电边界力的数值计算。这些努力促使我们开发了一种有效的近似一维方法,该方法可以在不牺牲精度的情况下,对生物分子应用进行一次一维拟合,以进行表面场拟合。我们还开发了一种表面到原子力分配方案,给定分析分子表面的水平集表示,以方便它们在分子模拟中的应用。这些拟合方法在介电边界力计算中的测试表明,二阶方法,包括一维方法,在分子测试案例中表现始终最好。最后,时间分析表明,在 PBE 力计算中,近似的一维方法比标准的二阶方法效率高得多。© 2017 威利父子公司。

相似文献

7
Dielectric pressure in continuum electrostatic solvation of biomolecules.生物分子连续静电溶剂化中的介电压力。
Phys Chem Chem Phys. 2012 Dec 5;14(45):15917-25. doi: 10.1039/c2cp43237d. Epub 2012 Oct 23.

引用本文的文献

3
Recent Developments in Free Energy Calculations for Drug Discovery.药物发现中自由能计算的最新进展。
Front Mol Biosci. 2021 Aug 11;8:712085. doi: 10.3389/fmolb.2021.712085. eCollection 2021.
4
Improved Poisson-Boltzmann Methods for High-Performance Computing.改进的泊松-玻尔兹曼方法用于高性能计算。
J Chem Theory Comput. 2019 Nov 12;15(11):6190-6202. doi: 10.1021/acs.jctc.9b00602. Epub 2019 Sep 30.
6
An efficient second-order poisson-boltzmann method.一种高效的二阶泊松-玻尔兹曼方法。
J Comput Chem. 2019 May 5;40(12):1257-1269. doi: 10.1002/jcc.25783. Epub 2019 Feb 18.
8
Recent Developments and Applications of the MMPBSA Method.MMPBSA方法的最新进展与应用
Front Mol Biosci. 2018 Jan 10;4:87. doi: 10.3389/fmolb.2017.00087. eCollection 2017.
9
Ionic Solution: What Goes Right and Wrong with Continuum Solvation Modeling.离子溶液:连续溶剂化建模的正确与错误之处。
J Phys Chem B. 2017 Dec 14;121(49):11169-11179. doi: 10.1021/acs.jpcb.7b09616. Epub 2017 Dec 1.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验