Schyns Ghislain, Potot Sébastien, Geng Yi, Barbosa Teresa M, Henriques Adriano, Perkins John B
Biotechnology R&D, DSM Nutritional Products, Ltd., Kaiseraugst, Switzerland.
J Bacteriol. 2005 Dec;187(23):8127-36. doi: 10.1128/JB.187.23.8127-8136.2005.
In bacteria, thiamine pyrophosphate (TPP) is an essential cofactor that is synthesized de novo. Thiamine, however, is not an intermediate in the biosynthetic pathway but is salvaged from the environment and phosphorylated to TPP. We have isolated and characterized new mutants of Bacillus subtilis that deregulate thiamine biosynthesis and affect the export of thiamine products from the cell. Deletion of the ydiA gene, which shows significant similarity to the thiamine monophosphate kinase gene of Escherichia coli (thiL), did not generate the expected thiamine auxotroph but instead generated a thiamine bradytroph that grew to near-wild-type levels on minimal medium. From this DeltathiL deletion mutant, two additional ethyl methanesulfonate-induced mutants that derepressed the expression of a thiC-lacZ transcriptional reporter were isolated. One mutant, Tx1, contained a nonsense mutation within the B. subtilis yloS (thiN) gene that encodes a thiamine pyrophosphokinase, a result which confirmed that B. subtilis contains a single-step, yeast-like thiamine-to-TPP pathway in addition to the bacterial TPP de novo pathway. A second mutant, strain Tx26, was shown to contain two lesions. Genetic mapping and DNA sequencing indicated that the first mutation affected yuaJ, which encodes a thiamine permease. The second mutation was located within the ykoD cistron of the ykoFEDC operon, which putatively encodes the ATPase component of a unique thiamine-related ABC transporter. Genetic and microarray studies indicated that both the mutant yuaJ and ykoD genes were required for the derepression of thiamine-regulated genes. Moreover, the combination of the four mutations (the DeltathiL, thiN, yuaJ, and ykoD mutations) into a single strain significantly increased the production and excretion of thiamine products into the culture medium. These results are consistent with the proposed "riboswitch" mechanism of thiamine gene regulation (W. C. Winkler, A. Nahvi, and R. R. Breaker, Nature 419:952-956, 2002).
在细菌中,硫胺素焦磷酸(TPP)是一种从头合成的必需辅因子。然而,硫胺素并非生物合成途径中的中间产物,而是从环境中 salvaged 并磷酸化为 TPP。我们已经分离并鉴定了枯草芽孢杆菌的新突变体,这些突变体解除了硫胺素生物合成的调控,并影响硫胺素产物从细胞中的输出。ydiA 基因的缺失,该基因与大肠杆菌的硫胺素单磷酸激酶基因(thiL)具有显著相似性,并未产生预期的硫胺素营养缺陷型,而是产生了一种硫胺素生长缓慢型,其在基本培养基上生长至接近野生型水平。从这个 DeltathiL 缺失突变体中,分离出另外两个经甲磺酸乙酯诱导的突变体,它们解除了 thiC-lacZ 转录报告基因的表达抑制。一个突变体 Tx1,在枯草芽孢杆菌的 yloS(thiN)基因内含有一个无义突变,该基因编码硫胺素焦磷酸激酶,这一结果证实枯草芽孢杆菌除了细菌的 TPP 从头合成途径外,还含有一条单步的、类似酵母的硫胺素到 TPP 的途径。第二个突变体 Tx26 被证明含有两个损伤。遗传图谱绘制和 DNA 测序表明,第一个突变影响 yuaJ,它编码一种硫胺素通透酶。第二个突变位于 ykoFEDC 操纵子的 ykoD 顺反子内,该操纵子推测编码一种独特的与硫胺素相关的 ABC 转运蛋白的 ATP 酶成分。遗传和微阵列研究表明,突变的 yuaJ 和 ykoD 基因对于硫胺素调控基因的去抑制都是必需的。此外,将四个突变(DeltathiL、thiN、yuaJ 和 ykoD 突变)组合到一个菌株中显著增加了硫胺素产物向培养基中的产生和排泄。这些结果与所提出的硫胺素基因调控的“核糖开关”机制一致(W. C. Winkler、A. Nahvi 和 R. R. Breaker,《自然》419:952 - 956,2002)。 (注:“salvaged”此处可能是“挽救、利用”之意,因专业知识有限,准确含义存疑)