Suppr超能文献

针对源自蜱传脑炎病毒的黄病毒复制子进行RNA免疫的体液免疫和细胞免疫反应。

Humoral and cellular immune response to RNA immunization with flavivirus replicons derived from tick-borne encephalitis virus.

作者信息

Aberle Judith H, Aberle Stephan W, Kofler Regina M, Mandl Christian W

机构信息

Institute of Virology, Kinderspitalgasse 15, A-1095 Vienna, Austria.

出版信息

J Virol. 2005 Dec;79(24):15107-13. doi: 10.1128/JVI.79.24.15107-15113.2005.

Abstract

A new vaccination principle against flaviviruses, based on a tick-borne encephalitis virus (TBEV) self-replicating noninfectious RNA vaccine that produces subviral particles, has recently been introduced (R. M. Kofler, J. H. Aberle, S. W. Aberle, S. L. Allison, F. X. Heinz, and C. W. Mandl, Proc. Natl. Acad. Sci. USA 7:1951-1956, 2004). In this study, we evaluated the potential of the self-replicating RNA vaccine in mice in comparison to those of live, attenuated vaccines and a formalin-inactivated whole-virus vaccine (ImmunInject). For this purpose, mice were immunized using gene gun-mediated application of the RNA vaccine and tested for CD8+ T-cell responses, long-term duration, neutralizing capacity, and isotype profile of specific antibodies and protection against lethal virus challenge. We demonstrate that the self-replicating RNA vaccine induced a broad-based, humoral and cellular (Th1 and CD8+ T-cell response) immune response comparable to that induced by live vaccines and that it protected mice from challenge. Even a single immunization with 1 microg of the replicon induced a long-lasting antibody response, characterized by high neutralizing antibody titers, which were sustained for at least 1 year. Nevertheless, it was possible to boost this response further by a second injection with the RNA vaccine, even in the presence of a concomitant CD8+ T-cell response. In this way it was possible to induce a balanced humoral and cellular immune response, similar to infection-induced immunity but without the safety hazards of infectious agents. The results also demonstrate the value of TBEV replicon RNA for inducing protective long-lasting antiviral responses.

摘要

最近引入了一种针对黄病毒的新型疫苗接种原理,该原理基于一种蜱传脑炎病毒(TBEV)自我复制的非感染性RNA疫苗,这种疫苗可产生亚病毒颗粒(R.M.科夫勒、J.H.阿伯勒、S.W.阿伯勒、S.L.艾利森、F.X.海因茨和C.W.曼德尔,《美国国家科学院院刊》7:1951 - 1956,2004年)。在本研究中,我们将自我复制RNA疫苗在小鼠体内的潜力与减毒活疫苗和福尔马林灭活全病毒疫苗(ImmunInject)进行了比较评估。为此,使用基因枪介导的方式对小鼠接种RNA疫苗,并检测其CD8 + T细胞反应、长期持续时间、中和能力、特异性抗体的亚型谱以及对致死性病毒攻击的保护作用。我们证明,自我复制RNA疫苗诱导了广泛的体液和细胞(Th1和CD8 + T细胞反应)免疫反应,与减毒活疫苗诱导的反应相当,并且能保护小鼠免受攻击。即使单次接种1微克复制子也能诱导持久的抗体反应,其特征是具有高中和抗体滴度,这种滴度至少维持1年。然而,即使在存在伴随的CD8 + T细胞反应的情况下,通过第二次注射RNA疫苗仍有可能进一步增强这种反应。通过这种方式,可以诱导出平衡的体液和细胞免疫反应,类似于感染诱导的免疫反应,但没有感染性病原体的安全隐患。结果还证明了TBEV复制子RNA在诱导保护性持久抗病毒反应方面的价值。

相似文献

3
Evaluation of tick-borne encephalitis DNA vaccines in monkeys.
Virology. 1999 Oct 10;263(1):166-74. doi: 10.1006/viro.1999.9918.
8
Intranasal immunization with inactivated tick-borne encephalitis virus and the antigenic peptide 89-119 protects mice against intraperitoneal challenge.
Int J Med Microbiol. 2006 May;296 Suppl 40:195-201. doi: 10.1016/j.ijmm.2006.02.002. Epub 2006 Mar 20.

引用本文的文献

2
Replicon RNA vaccines: design, delivery, and immunogenicity in infectious diseases and cancer.
J Hematol Oncol. 2025 Apr 17;18(1):43. doi: 10.1186/s13045-025-01694-2.
3
Amplifying mRNA vaccines: potential versatile magicians for oncotherapy.
Front Immunol. 2023 Oct 23;14:1261243. doi: 10.3389/fimmu.2023.1261243. eCollection 2023.
4
Advances in saRNA Vaccine Research against Emerging/Re-Emerging Viruses.
Vaccines (Basel). 2023 Jun 24;11(7):1142. doi: 10.3390/vaccines11071142.
5
mRNA vaccines: a new opportunity for malaria, tuberculosis and HIV.
Front Immunol. 2023 Apr 24;14:1172691. doi: 10.3389/fimmu.2023.1172691. eCollection 2023.
6
Inactivated tick-borne encephalitis vaccine elicits several overlapping waves of T cell response.
Front Immunol. 2022 Aug 24;13:970285. doi: 10.3389/fimmu.2022.970285. eCollection 2022.
7
Recent Advances in the Molecular Design and Delivery Technology of mRNA for Vaccination Against Infectious Diseases.
Front Immunol. 2022 Jul 15;13:896958. doi: 10.3389/fimmu.2022.896958. eCollection 2022.
8
The Current Landscape of mRNA Vaccines Against Viruses and Cancer-A Mini Review.
Front Immunol. 2022 May 6;13:885371. doi: 10.3389/fimmu.2022.885371. eCollection 2022.
9
Advances in COVID-19 mRNA vaccine development.
Signal Transduct Target Ther. 2022 Mar 23;7(1):94. doi: 10.1038/s41392-022-00950-y.
10
mRNA Vaccine Development for Emerging Animal and Zoonotic Diseases.
Viruses. 2022 Feb 15;14(2):401. doi: 10.3390/v14020401.

本文引用的文献

2
Flavivirus immunization with capsid-deletion mutants: basics, benefits, and barriers.
Viral Immunol. 2004;17(4):461-72. doi: 10.1089/vim.2004.17.461.
3
Mimicking live flavivirus immunization with a noninfectious RNA vaccine.
Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):1951-6. doi: 10.1073/pnas.0307145101. Epub 2004 Feb 9.
5
Exotic and emerging viral encephalitides.
Curr Opin Neurol. 2003 Jun;16(3):411-8. doi: 10.1097/01.wco.0000073944.19076.56.
6
Traditional and novel approaches to flavivirus vaccines.
Int J Parasitol. 2003 May;33(5-6):567-82. doi: 10.1016/s0020-7519(03)00063-8.
8
Generation of CTL responses using Kunjin replicon RNA.
Immunol Cell Biol. 2003 Feb;81(1):73-8. doi: 10.1046/j.0818-9641.2002.01137.x.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验