Mallik Roop, Petrov Dmitri, Lex S A, King S J, Gross S P
Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, USA.
Curr Biol. 2005 Dec 6;15(23):2075-85. doi: 10.1016/j.cub.2005.10.039.
Cytoplasmic dynein is the molecular motor responsible for most retrograde microtubule-based vesicular transport. In vitro single-molecule experiments suggest that dynein function is not as robust as that of kinesin-1 or myosin-V because dynein moves only a limited distance (approximately 800 nm) before detaching and can exert a modest (approximately 1 pN) force. However, dynein-driven cargos in vivo move robustly over many microns and exert forces of multiple pN. To determine how to go from limited single-molecule function to robust in vivo transport, we began to build complexity in a controlled manner by using in vitro experiments.
We show that a single cytoplasmic dynein motor frequently transitions into an off-pathway unproductive state that impairs net transport. Addition of a second (and/or third) dynein motor, so that cargos are moved by two (or three) motors rather than one, is sufficient to recover several properties of in vivo motion; such properties include long cargo travels, robust motion, and increased forces. Part of this improvement appears to arise from selective suppression of the unproductive state of dynein rather than from a fundamental change in dynein's mechanochemical cycle.
Multiple dyneins working together suppress shortcomings of a single motor and generate robust motion under in vitro conditions. There appears to be no need for additional cofactors (e.g., dynactin) for this improvement. Because cargos are often driven by multiple dyneins in vivo, our results show that changing the number of dynein motors could allow modulation of dynein function from the mediocre single-dynein limit to robust in vivo-like dynein-driven motion.
胞质动力蛋白是负责大多数基于微管逆行囊泡运输的分子马达。体外单分子实验表明,动力蛋白的功能不如驱动蛋白-1或肌球蛋白-V那样强大,因为动力蛋白在脱离之前仅移动有限的距离(约800纳米),并且只能施加适度的(约1皮牛)力。然而,体内由动力蛋白驱动的货物能稳健地移动许多微米,并施加多个皮牛的力。为了确定如何从有限的单分子功能转变为稳健的体内运输,我们开始通过体外实验以可控的方式构建复杂性。
我们发现单个胞质动力蛋白马达经常转变为偏离路径的非生产性状态,这会损害净运输。添加第二个(和/或第三个)动力蛋白马达,使货物由两个(或三个)马达而不是一个马达移动,足以恢复体内运动的几个特性;这些特性包括货物的长距离移动、稳健的运动和增加的力。这种改善的部分原因似乎是动力蛋白非生产性状态的选择性抑制,而不是动力蛋白机械化学循环的根本变化。
多个动力蛋白协同工作可抑制单个马达的缺点,并在体外条件下产生稳健的运动。这种改善似乎不需要额外的辅助因子(例如动力蛋白激活蛋白)。因为体内货物通常由多个动力蛋白驱动,我们的结果表明,改变动力蛋白马达的数量可以使动力蛋白的功能从普通的单动力蛋白限制调节为类似体内稳健的动力蛋白驱动的运动。