Monti Mariela R, Smania Andrea M, Fabro Georgina, Alvarez María E, Argaraña Carlos E
Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
Appl Environ Microbiol. 2005 Dec;71(12):8864-72. doi: 10.1128/AEM.71.12.8864-8872.2005.
Using the genes encoding the 2,4-dinitrotoluene degradation pathway enzymes, the nonpathogenic psychrotolerant rhizobacterium Pseudomonas fluorescens ATCC 17400 was genetically modified for degradation of this priority pollutant. First, a recombinant strain designated MP was constructed by conjugative transfer from Burkholderia sp. strain DNT of the pJS1 megaplasmid, which contains the dnt genes for 2,4-dinitrotoluene degradation. This strain was able to grow on 2,4-dinitrotoluene as the sole source of carbon, nitrogen, and energy at levels equivalent to those of Burkholderia sp. strain DNT. Nevertheless, loss of the 2,4-dinitrotoluene degradative phenotype was observed for strains carrying pJS1. The introduction of dnt genes into the P.fluorescens ATCC 17400 chromosome, using a suicide chromosomal integration Tn5-based delivery plasmid system, generated a degrading strain that was stable for a long time, which was designated RE. This strain was able to use 2,4-dinitrotoluene as a sole nitrogen source and to completely degrade this compound as a cosubstrate. Furthermore, P. fluorescens RE, but not Burkholderia sp. strain DNT, was capable of degrading 2,4-dinitrotoluene at temperatures as low as 10 degrees C. Finally, the presence of P. fluorescens RE in soils containing levels of 2,4-dinitrotoluene lethal to plants significantly decreased the toxic effects of this nitro compound on Arabidopsis thaliana growth. Using synthetic medium culture, P. fluorescens RE was found to be nontoxic for A.thaliana and Nicotiana tabacum, whereas under these conditions Burkholderia sp. strain DNT inhibited A.thaliana seed germination and was lethal to plants. These features reinforce the advantageous environmental robustness of P. fluorescens RE compared with Burkholderia sp. strain DNT.
利用编码2,4 - 二硝基甲苯降解途径酶的基因,对非致病性耐冷根际细菌荧光假单胞菌ATCC 17400进行基因改造,使其能够降解这种优先污染物。首先,通过从伯克霍尔德氏菌属菌株DNT接合转移含有2,4 - 二硝基甲苯降解dnt基因的pJS1大质粒,构建了一个名为MP的重组菌株。该菌株能够以2,4 - 二硝基甲苯作为唯一的碳、氮和能量来源生长,其生长水平与伯克霍尔德氏菌属菌株DNT相当。然而,观察到携带pJS1的菌株出现了2,4 - 二硝基甲苯降解表型的丧失。使用基于自杀性染色体整合Tn5的递送质粒系统,将dnt基因导入荧光假单胞菌ATCC 17400染色体,产生了一个长期稳定的降解菌株,命名为RE。该菌株能够将2,4 - 二硝基甲苯作为唯一氮源,并将该化合物作为共底物完全降解。此外,荧光假单胞菌RE能够在低至10摄氏度的温度下降解2,4 - 二硝基甲苯,而伯克霍尔德氏菌属菌株DNT则不能。最后,在含有对植物致死水平的2,4 - 二硝基甲苯的土壤中,荧光假单胞菌RE的存在显著降低了这种硝基化合物对拟南芥生长的毒性作用。通过合成培养基培养发现,荧光假单胞菌RE对拟南芥和烟草无毒,而在这些条件下,伯克霍尔德氏菌属菌株DNT抑制拟南芥种子萌发并对植物致死。这些特性强化了荧光假单胞菌RE相对于伯克霍尔德氏菌属菌株DNT在环境适应性方面的优势。