Suppr超能文献

评估与安全相关行为的严重程度。

Estimating the severity of safety related behaviour.

作者信息

Svensson Ase, Hydén Christer

机构信息

Department of Technology and Society, Lund Institute of Technology, Lund University, Box 118, SE-22100 Lund, Sweden.

出版信息

Accid Anal Prev. 2006 Mar;38(2):379-85. doi: 10.1016/j.aap.2005.10.009. Epub 2005 Dec 6.

Abstract

The aim of this work is to be a starting point for a more thorough description and analysis of safety related road user behaviour in order to better understand the different parts forming the traffic safety processes. The background is that it is problematic to use analysis of crash data and conflict data in the everyday traffic safety work due to low occurrence rates and the focus on rather exceptional and unsuccessful events. A new framework must consider the following aspects: (1) The importance of feedback to the road users. (2) Inclusion of more frequent events, "normal" road user behaviours and the possibility to link them to a severity dimension. (3) Prediction of safety/unsafety based on the more frequent events. By constructing severity hierarchies based on a uniform severity dimension (Time to Accident/Conflicting Speed value) it is possible to both describe the closeness to a crash and to get a comprehensive understanding of the connection between behaviour and safety by both considering unsuccessful and successful interactive situations. These severity hierarchies would make it possible to consider road users' expectations due to feedback and estimate its safety relevance.

摘要

这项工作的目的是成为一个起点,以便更全面地描述和分析与安全相关的道路使用者行为,从而更好地理解构成交通安全过程的不同部分。背景是,由于事故发生率低以及关注的是相当特殊和不成功的事件,在日常交通安全工作中使用事故数据和冲突数据进行分析存在问题。一个新的框架必须考虑以下方面:(1)向道路使用者反馈的重要性。(2)纳入更频繁发生的事件、“正常”的道路使用者行为以及将它们与严重程度维度相联系的可能性。(3)基于更频繁发生的事件对安全/不安全进行预测。通过基于统一的严重程度维度(事故发生时间/冲突速度值)构建严重程度层次结构,既可以描述接近碰撞的程度,又可以通过考虑不成功和成功的交互情况,全面理解行为与安全之间的联系。这些严重程度层次结构将使考虑道路使用者因反馈而产生的期望并估计其安全相关性成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验