Suppr超能文献

约翰逊产色菌葡萄糖限制培养物对营养过剩和饥饿的瞬态响应。

Transient Responses of Glucose-Limited Cultures of Cytophaga johnsonae to Nutrient Excess and Starvation.

机构信息

Limnologisches Institut der Universität Konstanz, D-7750 Konstanz, Federal Republic of Germany.

出版信息

Appl Environ Microbiol. 1984 Feb;47(2):356-62. doi: 10.1128/aem.47.2.356-362.1984.

Abstract

Cells from glucose-limited chemostat cultures of Cytophaga johnsonae were subjected to a sudden relaxation of substrate limitation by injecting the cells into fresh batch cultures. Starvation experiments were carried out by injecting glucose-limited cells into batch cultures lacking glucose. Transient responses of biomass, glucose uptake and mineralization, ATP content, and viability on different agar media were monitored during these nutrient-shift experiments. Cells reacted differently depending on growth rate and time spent in the chemostat. Fast-growing cells showed an immediate adaptation to the new growth conditions, despite some initial overshoot reactions in ATP and uptake potential. In contrast, slowly growing cells and long-term-adapted cells showed extensive transient growth responses. Glucose uptake and mineralization potentials changed considerably during the transient growth phase before reaching new levels. During the starvation experiments, all cell types displayed a fast decrease in ATP, but the responses of the substrate uptake and mineralization potentials were strongly dependent upon the previous growth rate. Both potentials decreased rapidly in cells with high growth rates. On the other hand, cells with low growth rates maintained 80% of their uptake and mineralization potentials after 8 h of starvation. Thus, slowly growing cells are much better adapted for starvation than are fast-growing cells.

摘要

将源自纤维弧菌葡萄糖限制恒化器培养物的细胞突然注入新鲜的分批培养物中,使细胞摆脱基质限制。通过将葡萄糖限制的细胞注入缺乏葡萄糖的分批培养物中进行饥饿实验。在这些营养转移实验中,监测了生物量、葡萄糖摄取和矿化、ATP 含量和在不同琼脂培养基上的生存能力的瞬态响应。根据生长速度和在恒化器中停留的时间,细胞的反应不同。尽管在 ATP 和摄取潜力方面存在一些初始超调反应,但快速生长的细胞立即适应了新的生长条件。相比之下,生长缓慢的细胞和长期适应的细胞表现出广泛的瞬态生长反应。在达到新水平之前,葡萄糖摄取和矿化潜力在瞬态生长阶段发生了相当大的变化。在饥饿实验中,所有细胞类型的 ATP 迅速下降,但底物摄取和矿化潜力的反应强烈依赖于先前的生长速度。高生长速度的细胞中这两个潜力迅速下降。另一方面,生长速度较低的细胞在饥饿 8 小时后仍保持 80%的摄取和矿化潜力。因此,与快速生长的细胞相比,生长缓慢的细胞对饥饿的适应能力要强得多。

相似文献

1
Transient Responses of Glucose-Limited Cultures of Cytophaga johnsonae to Nutrient Excess and Starvation.
Appl Environ Microbiol. 1984 Feb;47(2):356-62. doi: 10.1128/aem.47.2.356-362.1984.
2
Long-Term Changes in Chemostat Cultures of Cytophaga johnsonae.
Appl Environ Microbiol. 1983 Nov;46(5):1045-53. doi: 10.1128/aem.46.5.1045-1053.1983.
4
Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
Appl Environ Microbiol. 2019 Oct 1;85(20). doi: 10.1128/AEM.01161-19. Print 2019 Oct 15.
9
Responses to Stress and Nutrient Availability by the Marine Ultramicrobacterium Sphingomonas sp. Strain RB2256.
Appl Environ Microbiol. 1996 Apr;62(4):1287-94. doi: 10.1128/aem.62.4.1287-1294.1996.
10
Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures.
Mol Biol Cell. 2005 May;16(5):2503-17. doi: 10.1091/mbc.e04-11-0968. Epub 2005 Mar 9.

引用本文的文献

1
Effect of nutrient periodicity on microbial community dynamics.
Appl Environ Microbiol. 2006 May;72(5):3175-83. doi: 10.1128/AEM.72.5.3175-3183.2006.
2
Responses to Stress and Nutrient Availability by the Marine Ultramicrobacterium Sphingomonas sp. Strain RB2256.
Appl Environ Microbiol. 1996 Apr;62(4):1287-94. doi: 10.1128/aem.62.4.1287-1294.1996.
4
Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris.
J Bacteriol. 1987 Apr;169(4):1460-8. doi: 10.1128/jb.169.4.1460-1468.1987.

本文引用的文献

1
Microscale nutrient patches produced by zooplankton.
Proc Natl Acad Sci U S A. 1982 Aug;79(16):5001-5. doi: 10.1073/pnas.79.16.5001.
2
Long-Term Changes in Chemostat Cultures of Cytophaga johnsonae.
Appl Environ Microbiol. 1983 Nov;46(5):1045-53. doi: 10.1128/aem.46.5.1045-1053.1983.
3
Starvation-Survival Physiological Studies of a Marine Pseudomonas sp.
Appl Environ Microbiol. 1983 Apr;45(4):1206-11. doi: 10.1128/aem.45.4.1206-1211.1983.
4
Microcomputer-assisted biomass determination of plankton bacteria on scanning electron micrographs.
Appl Environ Microbiol. 1981 Jul;42(1):142-9. doi: 10.1128/aem.42.1.142-149.1981.
5
Occurrence of cytophagas in sewage plants.
Appl Environ Microbiol. 1980 Apr;39(4):756-63. doi: 10.1128/aem.39.4.756-763.1980.
6
The adaptive responses of Escherichia coli to a feast and famine existence.
Adv Microb Physiol. 1971;6:147-217. doi: 10.1016/s0065-2911(08)60069-7.
7
In vivo assay of protein synthesizing capacity of Escherichia coli from slowly growing chemostat cultures.
J Mol Biol. 1971 Feb 14;55(3):549-62. doi: 10.1016/0022-2836(71)90336-6.
8
Metabolic regulation in glucose-limited chemostat cultures of Escherichia coli.
J Bacteriol. 1970 Nov;104(2):698-706. doi: 10.1128/jb.104.2.698-706.1970.
9
Comparison of methods for extraction of bacterial adenine nucleotides determined by firefly assay.
Appl Microbiol. 1975 Nov;30(5):713-21. doi: 10.1128/am.30.5.713-721.1975.
10
The history, biology, and taxonomy of the Cytophaga group.
Can J Microbiol. 1977 Dec;23(12):1599-653. doi: 10.1139/m77-236.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验