Suppr超能文献

从沿海海洋沉积物的富集培养物中进行微生物锰还原。

Microbial manganese reduction by enrichment cultures from coastal marine sediments.

机构信息

Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093.

出版信息

Appl Environ Microbiol. 1985 Aug;50(2):491-7. doi: 10.1128/aem.50.2.491-497.1985.

Abstract

Manganese reduction was catalyzed by enrichment cultures of anaerobic bacteria obtained from coastal marine sediments. In the absence of oxygen, these enrichment cultures reduced manganates when grown on either lactate, succinate, or acetate in both sulfate-free and sulfate-containing artificial seawaters. Sodium azide as well as oxygen completely inhibited microbial manganese reduction by these enrichment cultures, whereas molybdate had no effect on them. The addition of nitrate to the medium slightly decreased the rate of Mn production by these enrichment cultures. These findings are consistent with the hypothesis that the manganese-reducing organisms in these enrichment cultures use manganates as terminal electron acceptors and couple manganese reduction in some way to the oxidation of organic matter.

摘要

锰的还原是由从沿海海洋沉积物中获得的厌氧细菌的富集培养物催化的。在没有氧气的情况下,这些富集培养物在硫酸盐-自由和硫酸盐-含有的人工海水中生长时,可将锰酸盐还原为乳酸盐、琥珀酸盐或乙酸盐。叠氮化钠以及氧气完全抑制了这些富集培养物对微生物锰的还原,而钼酸盐对它们没有影响。向培养基中添加硝酸盐会略微降低这些富集培养物产生 Mn 的速度。这些发现与以下假设一致,即这些富集培养物中的锰还原生物将锰酸盐用作末端电子受体,并以某种方式将锰还原与有机物的氧化偶联。

相似文献

1
Microbial manganese reduction by enrichment cultures from coastal marine sediments.
Appl Environ Microbiol. 1985 Aug;50(2):491-7. doi: 10.1128/aem.50.2.491-497.1985.
3
Hydrogen, acetate, and lactate as electron donors for microbial manganese reduction in a manganese-rich coastal marine sediment.
FEMS Microbiol Ecol. 2014 Mar;87(3):733-45. doi: 10.1111/1574-6941.12259. Epub 2013 Dec 11.
4
Microbial manganese and sulfate reduction in Black Sea shelf sediments.
Appl Environ Microbiol. 2000 Jul;66(7):2888-97. doi: 10.1128/AEM.66.7.2888-2897.2000.
5
Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment.
Appl Environ Microbiol. 2016 Sep 30;82(20):6120-6131. doi: 10.1128/AEM.01570-16. Print 2016 Oct 15.
6
Metabolism of organic compounds in anaerobic, hydrothermal sulphate-reducing marine sediments.
Environ Microbiol. 2003 Jul;5(7):583-91. doi: 10.1046/j.1462-2920.2003.00441.x.
8
Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
Appl Environ Microbiol. 1988 Jun;54(6):1472-80. doi: 10.1128/aem.54.6.1472-1480.1988.
9
Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese.
Appl Environ Microbiol. 1993 Jan;59(1):101-8. doi: 10.1128/aem.59.1.101-108.1993.

引用本文的文献

1
Targeting the human gut microbiome with small-molecule inhibitors.
Nat Rev Chem. 2023 May;7(5):319-339. doi: 10.1038/s41570-023-00471-4. Epub 2023 Apr 18.
3
The Energetic Potential for Undiscovered Manganese Metabolisms in Nature.
Front Microbiol. 2021 Jun 9;12:636145. doi: 10.3389/fmicb.2021.636145. eCollection 2021.
5
Biogenic Control of Manganese Doping in Zinc Sulfide Nanomaterial Using MR-1.
Front Microbiol. 2019 May 7;10:938. doi: 10.3389/fmicb.2019.00938. eCollection 2019.
6
Isolation and Characterization of Human Gut Bacteria Capable of Extracellular Electron Transport by Electrochemical Techniques.
Front Microbiol. 2019 Jan 15;9:3267. doi: 10.3389/fmicb.2018.03267. eCollection 2018.
7
Deep Subsurface Life from North Pond: Enrichment, Isolation, Characterization and Genomes of Heterotrophic Bacteria.
Front Microbiol. 2016 May 10;7:678. doi: 10.3389/fmicb.2016.00678. eCollection 2016.
8
Aerobic and anaerobic reduction of birnessite by a novel Dietzia strain.
Geochem Trans. 2015 Aug 8;16:11. doi: 10.1186/s12932-015-0026-0. eCollection 2015.

本文引用的文献

1
Bacteriology of manganese nodules: III. Reduction of MnO(2) by two strains of nodule bacteria.
Appl Microbiol. 1968 May;16(5):695-702. doi: 10.1128/am.16.5.695-702.1968.
2
Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate.
Appl Environ Microbiol. 1982 Feb;43(2):319-24. doi: 10.1128/aem.43.2.319-324.1982.
3
Volatile Fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment.
Appl Environ Microbiol. 1981 Jul;42(1):5-11. doi: 10.1128/aem.42.1.5-11.1981.
4
Anaerobic methane oxidation: occurrence and ecology.
Appl Environ Microbiol. 1980 Jan;39(1):194-204. doi: 10.1128/aem.39.1.194-204.1980.
5
Manganese dioxide as a terminal hydrogen acceptor in the study of respiratory systems.
Arch Biochem Biophys. 1952 Mar;36(1):132-46. doi: 10.1016/0003-9861(52)90385-8.
6
Bacteriology of manganese nodules. IV. Induction of an MnO2-reductase system in a marine bacillus.
Appl Microbiol. 1970 Jun;19(6):966-72. doi: 10.1128/am.19.6.966-972.1970.
7
Effects of seawater cations and temperature on manganese dioxide-reductase activity in a marine Bacillus.
Appl Microbiol. 1974 Nov;28(5):785-92. doi: 10.1128/am.28.5.785-792.1974.
8
Electron transport components of the MnO2 reductase system and the location of the terminal reductase in a marine Bacillus.
Appl Environ Microbiol. 1976 Jun;31(6):977-85. doi: 10.1128/aem.31.6.977-985.1976.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验