Suppr超能文献

三氯乙烯的异养富集培养矿化。

Mineralization of trichloroethylene by heterotrophic enrichment cultures.

机构信息

Savannah River Laboratory, E. I. du Pont de Nemours & Co., Inc., Aiken, South Carolina 29808, and Institute for Applied Microbiology, University of Tennessee, Knoxville/Oak Ridge National Laboratory, Knoxville, Tennessee 37932.

出版信息

Appl Environ Microbiol. 1988 Jul;54(7):1709-14. doi: 10.1128/aem.54.7.1709-1714.1988.

Abstract

Microbial consortia capable of aerobically degrading more than 99% of exogenous trichloroethylene (TCE) (50 mg/liter) were collected from TCE-contaminated subsurface sediments and grown in enrichment cultures. TCE at concentrations greater than 300 mg/liter was not degraded, nor was TCE used by the consortia as a sole energy source. Energy sources which permitted growth included tryptone-yeast extract, methanol, methane, and propane. The optimum temperature range for growth and subsequent TCE consumption was 22 to 37 degrees C, and the pH optimum was 7.0 to 8.1. Utilization of TCE occurred only after apparent microbial growth had ceased. The major end products recovered were hydrochloric acid and carbon dioxide. Minor products included dichloroethylene, vinylidine chloride, and, possibly, chloroform.

摘要

从受三氯乙烯(TCE)污染的地下沉积物中收集了能够好氧降解超过 99%的外源三氯乙烯(TCE)(50mg/L)的微生物群落,并在富集培养物中进行培养。浓度大于 300mg/L 的 TCE 不会被降解,群落也不会将 TCE 用作唯一能源。允许生长的能源包括胰蛋白胨-酵母提取物、甲醇、甲烷和丙烷。生长和随后 TCE 消耗的最佳温度范围为 22 至 37°C,最佳 pH 值为 7.0 至 8.1。只有在明显的微生物生长停止后,才会利用 TCE。回收的主要终产物是盐酸和二氧化碳。次要产物包括二氯乙烯、偏二氯乙烯和可能的氯仿。

相似文献

1
Mineralization of trichloroethylene by heterotrophic enrichment cultures.
Appl Environ Microbiol. 1988 Jul;54(7):1709-14. doi: 10.1128/aem.54.7.1709-1714.1988.
2
Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by rhodococcus species.
Appl Environ Microbiol. 1994 Feb;60(2):542-8. doi: 10.1128/aem.60.2.542-548.1994.
3
Biodegradation of trichloroethylene in continuous-recycle expanded-bed bioreactors.
Appl Environ Microbiol. 1990 Jun;56(6):1702-9. doi: 10.1128/aem.56.6.1702-1709.1990.
4
Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria.
Appl Environ Microbiol. 1989 Nov;55(11):2960-4. doi: 10.1128/aem.55.11.2960-2964.1989.
8
Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture.
Appl Environ Microbiol. 1986 Apr;51(4):720-4. doi: 10.1128/aem.51.4.720-724.1986.
9
10
Effect of nitrogen source on growth and trichloroethylene degradation by methane-oxidizing bacteria.
Appl Environ Microbiol. 1998 Sep;64(9):3451-7. doi: 10.1128/AEM.64.9.3451-3457.1998.

引用本文的文献

1
Natural Attenuation in Streambed Sediment Receiving Chlorinated Solvents from Underlying Fracture Networks.
Environ Sci Technol. 2017 May 2;51(9):4821-4830. doi: 10.1021/acs.est.6b05554. Epub 2017 Apr 11.
2
Comparison of bacteria from deep subsurface sediment and adjacent groundwater.
Microb Ecol. 1991 Dec;22(1):293-304. doi: 10.1007/BF02540231.
3
Methane and Trichloroethylene Degradation by Methylosinus trichosporium OB3b Expressing Particulate Methane Monooxygenase.
Appl Environ Microbiol. 1998 Mar;64(3):1106-14. doi: 10.1128/AEM.64.3.1106-1114.1998.
4
Reductive Dechlorination of Trichloroethylene and Tetrachloroethylene under Aerobic Conditions in a Sediment Column.
Appl Environ Microbiol. 1994 Jun;60(6):2200-4. doi: 10.1128/aem.60.6.2200-2204.1994.
5
Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by rhodococcus species.
Appl Environ Microbiol. 1994 Feb;60(2):542-8. doi: 10.1128/aem.60.2.542-548.1994.
6
Development of steady-state diffusion gradients for the cultivation of degradative microbial consortia.
Appl Environ Microbiol. 1993 Aug;59(8):2388-96. doi: 10.1128/aem.59.8.2388-2396.1993.
8
Toxicity of 1,1,1-Trichloroethane and Trichloroethene on a Mixed Culture of Methane-Oxidizing Bacteria.
Appl Environ Microbiol. 1990 Aug;56(8):2488-2493. doi: 10.1128/aem.56.8.2488-2493.1990.
9
Biodegradation of trichloroethylene in continuous-recycle expanded-bed bioreactors.
Appl Environ Microbiol. 1990 Jun;56(6):1702-9. doi: 10.1128/aem.56.6.1702-1709.1990.
10
Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms.
Appl Environ Microbiol. 1997 Oct;63(10):3866-71. doi: 10.1128/aem.63.10.3866-3871.1997.

本文引用的文献

1
Oxidation of chloroform in an aerobic soil exposed to natural gas.
Appl Environ Microbiol. 1986 Jul;52(1):203-5. doi: 10.1128/aem.52.1.203-205.1986.
2
Kinetics of microbial dehalogenation of haloaromatic substrates in methanogenic environments.
Appl Environ Microbiol. 1983 May;45(5):1466-73. doi: 10.1128/aem.45.5.1466-1473.1983.
3
Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum.
J Bacteriol. 1982 Jan;149(1):255-63. doi: 10.1128/jb.149.1.255-263.1982.
4
Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions.
Appl Environ Microbiol. 1983 Apr;45(4):1286-94. doi: 10.1128/aem.45.4.1286-1294.1983.
5
Rapid method for the radioisotopic analysis of gaseous end products of anaerobic metabolism.
Appl Microbiol. 1974 Aug;28(2):258-61. doi: 10.1128/am.28.2.258-261.1974.
7
Biotransformation of trichloroethylene in soil.
Appl Environ Microbiol. 1985 Jan;49(1):242-3. doi: 10.1128/aem.49.1.242-243.1985.
8
Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.
Appl Environ Microbiol. 1987 May;53(5):949-54. doi: 10.1128/aem.53.5.949-954.1987.
9
Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture.
Appl Environ Microbiol. 1986 Apr;51(4):720-4. doi: 10.1128/aem.51.4.720-724.1986.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验