Suppr超能文献

乙醇发酵过程中产生的辛酸和癸酸对酵母生长的抑制作用。

Inhibition of Yeast Growth by Octanoic and Decanoic Acids Produced during Ethanolic Fermentation.

机构信息

Laboratório de Engenharia Bioquímica, Instituto Superior Técnico, 1096 Lisbon Codex, and Departamento de Energias Renováveis, Laboratório Nacional de Engenharia e Tecnologia Industrial, 1699 Lisbon Codex, Portugal.

出版信息

Appl Environ Microbiol. 1989 Jan;55(1):21-8. doi: 10.1128/aem.55.1.21-28.1989.

Abstract

The inhibition of growth by octanoic or decanoic acids, two subproducts of ethanolic fermentation, was evaluated in Saccharomyces cerevisiae and Kluyveromyces marxianus in association with ethanol, the main product of fermentation. In both strains, octanoic and decanoic acids, at concentrations up to 16 and 8 mg/liter, respectively, decreased the maximum specific growth rate and the biomass yield at 30 degrees C as an exponential function of the fatty acid concentration and increased the duration of growth latency. These toxic effects increased with a decrease in pH in the range of 5.4 to 3.0, indicating that the undissociated form is the toxic molecule. Decanoic acid was more toxic than octanoic acid. The concentrations of octanoic and decanoic acids were determined during the ethanolic fermentation (30 degrees C) of two laboratory media (mineral and complex) by S. cerevisiae and of Jerusalem artichoke juice by K. marxianus. Based on the concentrations detected (0.7 to 23 mg/liter) and the kinetics of growth inhibition, the presence of octanoic and decanoic acids cannot be ignored in the evaluation of the overall inhibition of ethanolic fermentation.

摘要

乙醇发酵的两种副产物——辛酸和癸酸对酿酒酵母和马克斯克鲁维酵母生长的抑制作用与乙醇(发酵的主要产物)有关。在这两种菌株中,辛酸和癸酸的最大浓度分别为 16 和 8mg/L 时,均以脂肪酸浓度的指数函数形式降低了 30°C 时的最大比生长速率和生物量产率,并延长了生长潜伏期。这些毒性作用随着 pH 值从 5.4 降至 3.0 而增加,表明未离解形式是有毒分子。癸酸比辛酸更具毒性。通过酿酒酵母对两种实验室培养基(矿物质和复杂)和马克斯克鲁维酵母对菊芋汁的乙醇发酵(30°C),测定了辛酸和癸酸的浓度。根据检测到的浓度(0.7 至 23mg/L)和生长抑制动力学,在评估乙醇发酵的整体抑制作用时,不能忽略辛酸和癸酸的存在。

相似文献

1
Inhibition of Yeast Growth by Octanoic and Decanoic Acids Produced during Ethanolic Fermentation.
Appl Environ Microbiol. 1989 Jan;55(1):21-8. doi: 10.1128/aem.55.1.21-28.1989.
4
Comparative metabolome and transcriptome analyses of the properties of and yeasts in apple cider fermentation.
Food Chem (Oxf). 2022 Mar 8;4:100095. doi: 10.1016/j.fochms.2022.100095. eCollection 2022 Jul 30.
6
Chromosome arrangement, differentiation of growth kinetics and volatile molecule profiles in Kluyveromyces marxianus strains from Italian cheeses.
Int J Food Microbiol. 2015 Dec 2;214:151-158. doi: 10.1016/j.ijfoodmicro.2015.08.001. Epub 2015 Aug 13.
7
Activation of two different resistance mechanisms in Saccharomyces cerevisiae upon exposure to octanoic and decanoic acids.
Appl Environ Microbiol. 2010 Nov;76(22):7526-35. doi: 10.1128/AEM.01280-10. Epub 2010 Sep 17.
9
New insights into the toxicity mechanism of octanoic and decanoic acids on Saccharomyces cerevisiae.
Yeast. 2015 May;32(5):451-60. doi: 10.1002/yea.3071. Epub 2015 Apr 8.

引用本文的文献

2
The role of ion homeostasis in adaptation and tolerance to acetic acid stress in yeasts.
FEMS Yeast Res. 2024 Jan 9;24. doi: 10.1093/femsyr/foae016.
4
Antiproliferative activity of antimicrobial peptides and bioactive compounds from the mangrove .
Front Microbiol. 2023 Feb 17;14:1096826. doi: 10.3389/fmicb.2023.1096826. eCollection 2023.
6
Ca:Mg ratio, medium-chain fatty acids, and the gut microbiome.
Clin Nutr. 2022 Nov;41(11):2490-2499. doi: 10.1016/j.clnu.2022.08.031. Epub 2022 Sep 12.
8
Use of a Minimal Microbial Consortium to Determine the Origin of Kombucha Flavor.
Front Microbiol. 2022 Mar 21;13:836617. doi: 10.3389/fmicb.2022.836617. eCollection 2022.
9
Transcriptomic response of Saccharomyces cerevisiae to octanoic acid production.
FEMS Yeast Res. 2021 Mar 18;21(2). doi: 10.1093/femsyr/foab011.

本文引用的文献

1
Effect of benzoic Acid on growth yield of yeasts differing in their resistance to preservatives.
Appl Environ Microbiol. 1988 Aug;54(8):2091-5. doi: 10.1128/aem.54.8.2091-2095.1988.
3
Inhibition of alcoholic fermentation of grape must by Fatty acids produced by yeasts and their elimination by yeast ghosts.
Appl Environ Microbiol. 1984 Jun;47(6):1246-9. doi: 10.1128/aem.47.6.1246-1249.1984.
4
Uncoupling activity of long-chain fatty acids.
Biochim Biophys Acta. 1962 Aug 27;62:509-18. doi: 10.1016/0006-3002(62)90232-9.
5
Synergism in the inhibition of Bacillus subtilis by combinations of lipophilic weak acids and fatty alcohols.
Antimicrob Agents Chemother. 1981 Jun;19(6):1082-5. doi: 10.1128/AAC.19.6.1082.
6
Inhibition of growth and uptake processes in bacteria by some chemical food preservatives.
J Appl Bacteriol. 1980 Jun;48(3):423-32. doi: 10.1111/j.1365-2672.1980.tb01031.x.
7
Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae.
Biochim Biophys Acta. 1984 Jul 11;774(1):43-8. doi: 10.1016/0005-2736(84)90272-4.
8
Studies on the mechanism of the antifungal action of benzoate.
Biochem J. 1983 Sep 15;214(3):657-63. doi: 10.1042/bj2140657.
10
Function of lipophilic acids as antimicrobial food additives.
Nature. 1973 Feb 2;241(5388):321-5. doi: 10.1038/241321a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验