Suppr超能文献

嗜热厌氧杆菌在连续培养中从高水平木糖或葡萄糖中生长和产物产率。

Thermoanaerobacter ethanolicus Growth and Product Yield from Elevated Levels of Xylose or Glucose in Continuous Cultures.

机构信息

Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.

出版信息

Appl Environ Microbiol. 1991 Feb;57(2):579-85. doi: 10.1128/aem.57.2.579-585.1991.

Abstract

The performance of Thermoanaerobacter ethanolicus was evaluated in continuous culture with media containing concentrations of xylose (8 to 20 g/liter) greater than those previously reported. The ethanol yield declined from to 0.42 to 0.29 g of ethanol per g of xylose consumed when input xylose was increased from 4 to 20 g/liter. Yields of both total C(2) and C(3) products from consumed xylose and of cell biomass from ATP produced declined as the input xylose concentration was increased, which was not the case when glucose was the substrate. This suggested that yeast extract functioned as a significant energy and carbon source for cells in fermentations of xylose but not of glucose. The feasibility of this interpretation was confirmed by (i) the calculation of the products theoretically obtainable from yeast extract and (ii) the observation of significant quantities of fermentation products in inoculated sugar-free media. Markedly different patterns of metabolism for the two sugar substrates were also evidenced by the cell yield for glucose being twice that of xylose at elevated sugar concentrations. It was noted that caution must be exerted when results obtained at low xylose concentrations are extrapolated to predict those which can be obtained at higher concentrations.

摘要

采用含有木糖(8 至 20 克/升)浓度大于先前报道的培养基,对热厌氧菌连续培养的性能进行了评估。当输入木糖从 4 克/升增加到 20 克/升时,乙醇的产率从每克消耗木糖 0.42 克下降到 0.29 克。从消耗的木糖和从 ATP 产生的细胞生物质中,C(2)和 C(3)产物的总产率随着输入木糖浓度的增加而下降,而当葡萄糖为底物时则不是这样。这表明酵母提取物在木糖发酵中为细胞提供了重要的能量和碳源,但在葡萄糖发酵中则不是这样。通过(i)从酵母提取物中计算出理论上可获得的产物,以及(ii)在接种无糖培养基中观察到大量发酵产物,证实了这一解释的可行性。两种糖底物的代谢模式也明显不同,在高糖浓度下,葡萄糖的细胞产率是木糖的两倍。需要注意的是,当将在低木糖浓度下获得的结果外推以预测在更高浓度下可以获得的结果时,必须谨慎。

相似文献

1
Thermoanaerobacter ethanolicus Growth and Product Yield from Elevated Levels of Xylose or Glucose in Continuous Cultures.
Appl Environ Microbiol. 1991 Feb;57(2):579-85. doi: 10.1128/aem.57.2.579-585.1991.
2
Effect of nutrient limitation on product formation during continuous fermentation of xylose with Thermoanaerobacter ethanolicus JW200 Fe(7).
Appl Microbiol Biotechnol. 2003 Feb;60(6):679-86. doi: 10.1007/s00253-002-1175-5. Epub 2002 Dec 19.
3
Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus.
Bioresour Technol. 2009 Dec;100(23):5955-65. doi: 10.1016/j.biortech.2009.06.084. Epub 2009 Jul 15.
5
Comparative energetics of glucose and xylose metabolism in recombinant Zymomonas mobilis.
Appl Biochem Biotechnol. 2000 Spring;84-86:277-93. doi: 10.1385/abab:84-86:1-9:277.
6
Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis.
Appl Biochem Biotechnol. 1991 Spring;28-29:221-36. doi: 10.1007/BF02922603.
8
Comparative energetics of glucose and xylose metabolism in ethanologenic recombinant Escherichia coli B.
Appl Biochem Biotechnol. 1995 Spring;51-52:179-95. doi: 10.1007/BF02933423.
9
Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
Appl Biochem Biotechnol. 2002 Spring;98-100:429-48. doi: 10.1385/abab:98-100:1-9:429.

引用本文的文献

1
Comparative Analysis of Carbon Monoxide Tolerance among Thermoanaerobacter Species.
Front Microbiol. 2016 Aug 29;7:1330. doi: 10.3389/fmicb.2016.01330. eCollection 2016.
4
Natural competence in Thermoanaerobacter and Thermoanaerobacterium species.
Appl Environ Microbiol. 2010 Jul;76(14):4713-9. doi: 10.1128/AEM.00402-10. Epub 2010 May 14.
5
Characterization of the central metabolic pathways in Thermoanaerobacter sp. strain X514 via isotopomer-assisted metabolite analysis.
Appl Environ Microbiol. 2009 Aug;75(15):5001-8. doi: 10.1128/AEM.00715-09. Epub 2009 Jun 12.
6
Regulation of Product Formation in Bacteroides xylanolyticus X5-1 by Interspecies Electron Transfer.
Appl Environ Microbiol. 1994 Apr;60(4):1347-52. doi: 10.1128/aem.60.4.1347-1352.1994.
7
Xylose and Glucose Utilization by Bacteroides xylanolyticus X5-1 Cells Grown in Batch and Continuous Culture.
Appl Environ Microbiol. 1994 Feb;60(2):576-80. doi: 10.1128/aem.60.2.576-580.1994.
8
Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus.
J Bacteriol. 1993 Mar;175(6):1823-30. doi: 10.1128/jb.175.6.1823-1830.1993.
9
D-xylose catabolism in Bacteroides xylanolyticus X5-1.
Arch Microbiol. 1994;161(6):521-7. doi: 10.1007/BF00307774.
10
Strain selection in carbon-limited chemostats affects reproducibility of Thermoanaerobacter ethanolicus fermentations.
Appl Environ Microbiol. 1992 Feb;58(2):761-4. doi: 10.1128/aem.58.2.761-764.1992.

本文引用的文献

1
Purification and Properties of Primary and Secondary Alcohol Dehydrogenases from Thermoanaerobacter ethanolicus.
Appl Environ Microbiol. 1988 Feb;54(2):460-5. doi: 10.1128/aem.54.2.460-465.1988.
2
Relationship Between Substrate Concentration and Fermentation Product Ratios in Clostridium thermocellum Cultures.
Appl Environ Microbiol. 1984 May;47(5):1126-9. doi: 10.1128/aem.47.5.1126-1129.1984.
4
Amino acid degradation by anaerobic bacteria.
Annu Rev Biochem. 1981;50:23-40. doi: 10.1146/annurev.bi.50.070181.000323.
5
Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux.
Proc Natl Acad Sci U S A. 1980 Sep;77(9):5502-6. doi: 10.1073/pnas.77.9.5502.
6
Futile xylitol cycle in Lactobacillus casei.
J Bacteriol. 1984 Oct;160(1):211-5. doi: 10.1128/jb.160.1.211-215.1984.
9
Influence of transport energization on the growth yield of Escherichia coli.
J Bacteriol. 1985 Sep;163(3):1237-42. doi: 10.1128/jb.163.3.1237-1242.1985.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验