Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada R3T 5V6.
BMC Microbiol. 2012 Dec 18;12:295. doi: 10.1186/1471-2180-12-295.
Fermentative bacteria offer the potential to convert lignocellulosic waste-streams into biofuels such as hydrogen (H2) and ethanol. Current fermentative H2 and ethanol yields, however, are below theoretical maxima, vary greatly among organisms, and depend on the extent of metabolic pathways utilized. For fermentative H2 and/or ethanol production to become practical, biofuel yields must be increased. We performed a comparative meta-analysis of (i) reported end-product yields, and (ii) genes encoding pyruvate metabolism and end-product synthesis pathways to identify suitable biomarkers for screening a microorganism's potential of H2 and/or ethanol production, and to identify targets for metabolic engineering to improve biofuel yields. Our interest in H2 and/or ethanol optimization restricted our meta-analysis to organisms with sequenced genomes and limited branched end-product pathways. These included members of the Firmicutes, Euryarchaeota, and Thermotogae.
Bioinformatic analysis revealed that the absence of genes encoding acetaldehyde dehydrogenase and bifunctional acetaldehyde/alcohol dehydrogenase (AdhE) in Caldicellulosiruptor, Thermococcus, Pyrococcus, and Thermotoga species coincide with high H2 yields and low ethanol production. Organisms containing genes (or activities) for both ethanol and H2 synthesis pathways (i.e. Caldanaerobacter subterraneus subsp. tengcongensis, Ethanoligenens harbinense, and Clostridium species) had relatively uniform mixed product patterns. The absence of hydrogenases in Geobacillus and Bacillus species did not confer high ethanol production, but rather high lactate production. Only Thermoanaerobacter pseudethanolicus produced relatively high ethanol and low H2 yields. This may be attributed to the presence of genes encoding proteins that promote NADH production. Lactate dehydrogenase and pyruvate:formate lyase are not conducive for ethanol and/or H2 production. While the type(s) of encoded hydrogenases appear to have little impact on H2 production in organisms that do not encode ethanol producing pathways, they do influence reduced end-product yields in those that do.
Here we show that composition of genes encoding pathways involved in pyruvate catabolism and end-product synthesis pathways can be used to approximate potential end-product distribution patterns. We have identified a number of genetic biomarkers for streamlining ethanol and H2 producing capabilities. By linking genome content, reaction thermodynamics, and end-product yields, we offer potential targets for optimization of either ethanol or H2 yields through metabolic engineering.
发酵细菌具有将木质纤维素废物转化为生物燃料(如氢气(H2)和乙醇)的潜力。然而,目前的发酵 H2 和乙醇产率低于理论最大值,在不同的生物体之间差异很大,并且取决于所利用的代谢途径的程度。为了使发酵 H2 和/或乙醇生产变得实用,必须提高生物燃料的产量。我们对(i)报告的终产物产率和(ii)编码丙酮酸代谢和终产物合成途径的基因进行了比较荟萃分析,以确定适合筛选微生物 H2 和/或乙醇生产潜力的生物标志物,并确定代谢工程的目标以提高生物燃料产量。我们对 H2 和/或乙醇优化的兴趣限制了我们的荟萃分析仅限于具有测序基因组和有限分支终产物途径的生物体。这些包括厚壁菌门、广古菌门和热球菌门的成员。
生物信息学分析表明,在 Caldicellulosiruptor、Thermococcus、Pyrococcus 和 Thermotoga 物种中缺乏编码乙醛脱氢酶和双功能乙醛/乙醇脱氢酶(AdhE)的基因,这与高 H2 产率和低乙醇产率相吻合。含有乙醇和 H2 合成途径的基因(即 Caldanaerobacter subterraneus subsp. tengcongensis、Ethanoligenens harbinense 和 Clostridium 物种)的生物体具有相对均匀的混合产物模式。产氢酶在 Geobacillus 和 Bacillus 物种中的缺失并没有导致高乙醇产量,而是导致高乳酸产量。只有 Thermoanaerobacter pseudethanolicus 产生相对较高的乙醇和较低的 H2 产率。这可能归因于存在促进 NADH 产生的编码蛋白的基因。乳酸脱氢酶和丙酮酸:甲酸裂解酶不利于乙醇和/或 H2 的产生。虽然编码的产氢酶的类型似乎对不编码乙醇产生途径的生物体中的 H2 生产没有影响,但它们确实会影响那些产生的还原终产物产量。
在这里,我们表明参与丙酮酸分解代谢和终产物合成途径的基因组成可以用于近似潜在的终产物分布模式。我们已经确定了一些用于简化乙醇和 H2 生产能力的遗传生物标志物。通过将基因组内容、反应热力学和终产物产率联系起来,我们为通过代谢工程优化乙醇或 H2 产率提供了潜在的目标。