Suppr超能文献

嗜热古菌激烈火球菌中硫还原的生物能量学

Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus.

作者信息

Schicho R N, Ma K, Adams M W, Kelly R M

机构信息

Department of Chemical Engineering, Johns Hopkins University, Baltimore, Maryland 21218.

出版信息

J Bacteriol. 1993 Mar;175(6):1823-30. doi: 10.1128/jb.175.6.1823-1830.1993.

Abstract

The bioenergetic role of the reduction of elemental sulfur (S0) in the hyperthermophilic archaeon (formerly archaebacterium) Pyrococcus furiosus was investigated with chemostat cultures with maltose as the limiting carbon source. The maximal yield coefficient was 99.8 g (dry weight) of cells (cdw) per mol of maltose in the presence of S0 but only 51.3 g (cdw) per mol of maltose if S0 was omitted. However, the corresponding maintenance coefficients were not found to be significantly different. The primary fermentation products detected were H2, CO2, and acetate, together with H2S, when S0 was also added to the growth medium. If H2S was summed with H2 to represent total reducing equivalents released during fermentation, the presence of S0 had no significant effect on the pattern of fermentation products. In addition, the presence of S0 did not significantly affect the specific activities in cell extracts of hydrogenase, sulfur reductase, alpha-glucosidase, or protease. These results suggest either that S0 reduction is an energy-conserving reaction, i.e., S0 respiration, or that S0 has a stimulatory effect on or helps overcome a process that is yield limiting. A modification of the Entner-Doudoroff glycolytic pathway has been proposed as the primary route of glucose catabolism in P. furiosus (S. Mukund and M. W. W. Adams, J. Biol. Chem. 266:14208-14216, 1991). Operation of this pathway should yield 4 mol of ATP per mol of maltose oxidized, from which one can calculate a value of 12.9 g (cdw) per mol of ATP for non-S0 growth. Comparison of this value to the yield data for growth in the presence of S0 reduction is equivalent to an ATP yield of 0.5 mol of ATP per mol of S0 reduced. Possible mechanism to account for this apparent energy conservation are discussed.

摘要

利用恒化器培养,以麦芽糖作为限制性碳源,研究了嗜热古菌(以前称为古细菌)激烈火球菌中元素硫(S⁰)还原的生物能量作用。在有S⁰存在的情况下,最大产量系数为每摩尔麦芽糖产生99.8克(干重)细胞(cdw),但如果省略S⁰,则每摩尔麦芽糖仅产生51.3克(cdw)。然而,相应的维持系数没有发现显著差异。检测到的主要发酵产物是H₂、CO₂和乙酸盐,当S⁰也添加到生长培养基中时,还会产生H₂S。如果将H₂S与H₂相加来表示发酵过程中释放的总还原当量,S⁰的存在对发酵产物模式没有显著影响。此外,S⁰的存在对氢化酶、硫还原酶、α-葡萄糖苷酶或蛋白酶的细胞提取物中的比活性没有显著影响。这些结果表明,要么S⁰还原是一种能量守恒反应,即S⁰呼吸作用,要么S⁰对产量限制过程具有刺激作用或有助于克服该过程。有人提出,Entner-Doudoroff糖酵解途径的一种变体是激烈火球菌中葡萄糖分解代谢的主要途径(S. Mukund和M. W. W. Adams,《生物化学杂志》266:14208 - 14216,1991)。该途径的运行每氧化一摩尔麦芽糖应产生4摩尔ATP,由此可以计算出非S⁰生长时每摩尔ATP的产量为12.9克(cdw)。将该值与存在S⁰还原时的生长产量数据进行比较,相当于每还原一摩尔S⁰产生0.5摩尔ATP的产量。文中讨论了可能解释这种明显能量守恒的机制。

相似文献

1
Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus.
J Bacteriol. 1993 Mar;175(6):1823-30. doi: 10.1128/jb.175.6.1823-1830.1993.
5
Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms.
FEMS Microbiol Rev. 1994 Oct;15(2-3):261-77. doi: 10.1111/j.1574-6976.1994.tb00139.x.

引用本文的文献

1
The Evolutionary Landscape of tRNA Modifications in Archaea: Insights from High-Throughput Sequencing.
bioRxiv. 2025 May 5:2025.05.02.651894. doi: 10.1101/2025.05.02.651894.
2
A dynamic protein interactome drives energy conservation and electron flux in .
Appl Environ Microbiol. 2025 Apr 23;91(4):e0029325. doi: 10.1128/aem.00293-25. Epub 2025 Apr 3.
3
Precipitation of greigite and pyrite induced by Thermococcales: an advantage to live in Fe- and S-rich environments?
Environ Microbiol. 2022 Feb;24(2):626-642. doi: 10.1111/1462-2920.15915. Epub 2022 Feb 1.
4
Evolution of complex I-like respiratory complexes.
J Biol Chem. 2021 Jan-Jun;296:100740. doi: 10.1016/j.jbc.2021.100740. Epub 2021 May 3.
7
Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes.
J Biol Chem. 2018 Oct 26;293(43):16687-16696. doi: 10.1074/jbc.RA118.005092. Epub 2018 Sep 4.
8
Biotechnology of extremely thermophilic archaea.
FEMS Microbiol Rev. 2018 Sep 1;42(5):543-578. doi: 10.1093/femsre/fuy012.
10

本文引用的文献

1
Regulation of Proteolytic Activity in the Hyperthermophile Pyrococcus furiosus.
Appl Environ Microbiol. 1992 Apr;58(4):1134-41. doi: 10.1128/aem.58.4.1134-1141.1992.
2
Thermoanaerobacter ethanolicus Growth and Product Yield from Elevated Levels of Xylose or Glucose in Continuous Cultures.
Appl Environ Microbiol. 1991 Feb;57(2):579-85. doi: 10.1128/aem.57.2.579-585.1991.
3
Characterization of Amylolytic Enzyme Activities Associated with the Hyperthermophilic Archaebacterium Pyrococcus furiosus.
Appl Environ Microbiol. 1990 Jul;56(7):1985-91. doi: 10.1128/aem.56.7.1985-1991.1990.
4
Role of Polysulfides in Reduction of Elemental Sulfur by the Hyperthermophilic Archaebacterium Pyrococcus furiosus.
Appl Environ Microbiol. 1990 May;56(5):1255-62. doi: 10.1128/aem.56.5.1255-1262.1990.
6
Growth Kinetics and Yield Coefficients of the Extreme Thermophile Thermothrix thiopara in Continuous Culture.
Appl Environ Microbiol. 1983 Jan;45(1):169-73. doi: 10.1128/aem.45.1.169-173.1983.
7
The Stickland reaction.
Bacteriol Rev. 1954 Mar;18(1):16-42. doi: 10.1128/br.18.1.16-42.1954.
9
Amino acid degradation by anaerobic bacteria.
Annu Rev Biochem. 1981;50:23-40. doi: 10.1146/annurev.bi.50.070181.000323.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验