Suppr超能文献

利用代谢工程在产色氨酸谷氨酸棒杆菌中生产酪氨酸或苯丙氨酸。

Metabolic Engineering To Produce Tyrosine or Phenylalanine in a Tryptophan-Producing Corynebacterium glutamicum Strain.

机构信息

Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Asahi-machi, Machida-shi, Tokyo 194, Japan.

出版信息

Appl Environ Microbiol. 1992 Mar;58(3):781-5. doi: 10.1128/aem.58.3.781-785.1992.

Abstract

The aromatic amino acids are synthesized via a common biosynthetic pathway. A tryptophan-producing mutant of Corynebacterium glutamicum was genetically engineered to produce tyrosine or phenylalanine in abundance. To achieve this, three biosynthetic genes encoding the first enzyme in the common pathway, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DS), and the branch-point enzymes chorismate mutase and prephenate dehydratase were individually cloned from regulatory mutants of C. glutamicum which have either of the corresponding enzymes desensitized to end product inhibition. These cloned genes were assembled one after another onto a multicopy vector of C. glutamicum to yield two recombinant plasmids. One plasmid, designated pKY1, contains the DS and chorismate mutase genes, and the other, designated pKF1, contains all three biosynthetic genes. The enzymes specified by both plasmids were simultaneously overexpressed approximately sevenfold relative to the chromosomally encoded enzymes in a C. glutamicum strain. When transformed with pKY1 or pKF1, tryptophan-producing C. glutamicum KY10865, with the ability to produce 18 g of tryptophan per liter, was altered to produce a large amount of tyrosine (26 g/liter) or phenylalanine (28 g/liter), respectively, because the accelerated carbon flow through the common pathway was redirected to tyrosine or phenylalanine.

摘要

芳香族氨基酸是通过共同的生物合成途径合成的。通过基因工程将产色氨酸的棒状杆菌突变株改造为大量生产酪氨酸或苯丙氨酸。为了实现这一目标,从对终产物抑制脱敏的调节突变株中分别克隆了编码共同途径中第一个酶 3-脱氧-d-阿拉伯庚酮糖 7-磷酸合酶(DS)以及分支点酶分支酸变位酶和预苯酸脱水酶的三个生物合成基因。这些克隆的基因一个接一个地组装到谷氨酸棒杆菌的多拷贝载体上,得到了两个重组质粒。一个质粒,命名为 pKY1,包含 DS 和分支酸变位酶基因,另一个质粒,命名为 pKF1,包含所有三个生物合成基因。与染色体编码的酶相比,两个质粒指定的酶在谷氨酸棒杆菌菌株中同时过量表达约 7 倍。当转化为 pKY1 或 pKF1 时,具有生产 18 克色氨酸/升能力的产色氨酸谷氨酸棒杆菌 KY10865 分别改变为大量生产酪氨酸(26 克/升)或苯丙氨酸(28 克/升),因为加速的碳流通过共同途径被重新定向到酪氨酸或苯丙氨酸。

相似文献

1
Metabolic Engineering To Produce Tyrosine or Phenylalanine in a Tryptophan-Producing Corynebacterium glutamicum Strain.
Appl Environ Microbiol. 1992 Mar;58(3):781-5. doi: 10.1128/aem.58.3.781-785.1992.
2
Stepwise metabolic engineering of Corynebacterium glutamicum for the production of phenylalanine.
J Gen Appl Microbiol. 2023 Jun 22;69(1):11-23. doi: 10.2323/jgam.2022.08.002. Epub 2022 Aug 22.
3
Altered prephenate dehydratase in phenylalanine-excreting mutants of Brevibacterium flavum.
J Biochem. 1976 Jan;79(1):173-83. doi: 10.1093/oxfordjournals.jbchem.a131045.
4
Genetic and biochemical identification of the chorismate mutase from Corynebacterium glutamicum.
Microbiology (Reading). 2009 Oct;155(Pt 10):3382-3391. doi: 10.1099/mic.0.029819-0. Epub 2009 Jul 9.
9
Metabolic engineering with adaptive laboratory evolution for phenylalanine production by Corynebacterium glutamicum.
J Biosci Bioeng. 2024 May;137(5):344-353. doi: 10.1016/j.jbiosc.2024.01.006. Epub 2024 Feb 15.
10
Production of l-Phenylalanine from Starch by Analog-Resistant Mutants of Bacillus polymyxa.
Appl Environ Microbiol. 1986 Oct;52(4):637-43. doi: 10.1128/aem.52.4.637-643.1986.

引用本文的文献

1
Expanding the application of tyrosine: engineering microbes for the production of tyrosine and its derivatives.
Front Bioeng Biotechnol. 2025 Apr 24;13:1519764. doi: 10.3389/fbioe.2025.1519764. eCollection 2025.
2
3
Biosynthesis of eriodictyol from tyrosine by Corynebacterium glutamicum.
Microb Cell Fact. 2022 May 14;21(1):86. doi: 10.1186/s12934-022-01815-3.
4
Pyruvate Production by Escherichia coli by Use of Pyruvate Dehydrogenase Variants.
Appl Environ Microbiol. 2021 Jun 11;87(13):e0048721. doi: 10.1128/AEM.00487-21.
5
Unveiling the Biogeography and Potential Functions of the Intestinal Digesta- and Mucosa-Associated Microbiome of Donkeys.
Front Microbiol. 2020 Dec 4;11:596882. doi: 10.3389/fmicb.2020.596882. eCollection 2020.
6
Enhancing the efficiency of L-tyrosine by repeated batch fermentation.
Bioengineered. 2020 Dec;11(1):852-861. doi: 10.1080/21655979.2020.1804177.
8
Unraveling the specific regulation of the shikimate pathway for tyrosine accumulation in Bacillus licheniformis.
J Ind Microbiol Biotechnol. 2019 Aug;46(8):1047-1059. doi: 10.1007/s10295-019-02213-2. Epub 2019 Jul 11.
9
Recombinant Protein Expression System in and Its Application.
Front Microbiol. 2018 Oct 26;9:2523. doi: 10.3389/fmicb.2018.02523. eCollection 2018.
10
Metabolic engineering of Corynebacterium glutamicum for anthocyanin production.
Microb Cell Fact. 2018 Sep 14;17(1):143. doi: 10.1186/s12934-018-0990-z.

本文引用的文献

5
New M13 vectors for cloning.
Methods Enzymol. 1983;101:20-78. doi: 10.1016/0076-6879(83)01005-8.
6
Protoplast transformation of glutamate-producing bacteria with plasmid DNA.
J Bacteriol. 1984 Jul;159(1):306-11. doi: 10.1128/jb.159.1.306-311.1984.
8
Enzyme alterations in tyrosine and phenylalanine auxotrophs of Salmonella typhimurium.
J Bacteriol. 1971 Dec;108(3):1174-80. doi: 10.1128/jb.108.3.1174-1180.1971.
10
Cloning vector system for Corynebacterium glutamicum.
J Bacteriol. 1985 May;162(2):591-7. doi: 10.1128/jb.162.2.591-597.1985.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验