Suppr超能文献

贝叶斯信念网络预计算算法。

Algorithms for Bayesian belief-network precomputation.

作者信息

Herskovits E H, Cooper G F

机构信息

Section on Medical Informatics, Stanford University, CA.

出版信息

Methods Inf Med. 1991 Apr;30(2):81-9.

PMID:1857253
Abstract

Bayesian belief networks provide an intuitive and concise means of representing probabilistic relationships among the variables in expert systems. A major drawback to this methodology is its computational complexity. We present an introduction to belief networks, and describe methods for precomputing, or caching, part of a belief network based on metrics of probability and expected utility. These algorithms are examples of a general method for decreasing expected running time for probabilistic inference. We first present the necessary background, and then present algorithms for producing caches based on metrics of expected probability and expected utility. We show how these algorithms can be applied to a moderately complex belief network, and present directions for future research.

摘要

贝叶斯信念网络提供了一种直观且简洁的方式来表示专家系统中变量之间的概率关系。这种方法的一个主要缺点是其计算复杂性。我们介绍信念网络,并描述基于概率和期望效用度量对信念网络的一部分进行预计算或缓存的方法。这些算法是降低概率推理期望运行时间的一般方法的示例。我们首先介绍必要的背景知识,然后给出基于期望概率和期望效用度量生成缓存的算法。我们展示了这些算法如何应用于一个中等复杂的信念网络,并给出了未来研究的方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验