Herskovits E H, Cooper G F
Section on Medical Informatics, Stanford University, CA.
Methods Inf Med. 1991 Apr;30(2):81-9.
Bayesian belief networks provide an intuitive and concise means of representing probabilistic relationships among the variables in expert systems. A major drawback to this methodology is its computational complexity. We present an introduction to belief networks, and describe methods for precomputing, or caching, part of a belief network based on metrics of probability and expected utility. These algorithms are examples of a general method for decreasing expected running time for probabilistic inference. We first present the necessary background, and then present algorithms for producing caches based on metrics of expected probability and expected utility. We show how these algorithms can be applied to a moderately complex belief network, and present directions for future research.
贝叶斯信念网络提供了一种直观且简洁的方式来表示专家系统中变量之间的概率关系。这种方法的一个主要缺点是其计算复杂性。我们介绍信念网络,并描述基于概率和期望效用度量对信念网络的一部分进行预计算或缓存的方法。这些算法是降低概率推理期望运行时间的一般方法的示例。我们首先介绍必要的背景知识,然后给出基于期望概率和期望效用度量生成缓存的算法。我们展示了这些算法如何应用于一个中等复杂的信念网络,并给出了未来研究的方向。