Suppr超能文献

丝裂原活化蛋白激酶级联反应中的双稳性、随机性和振荡

Bistability, stochasticity, and oscillations in the mitogen-activated protein kinase cascade.

作者信息

Wang Xiao, Hao Nan, Dohlman Henrik G, Elston Timothy C

机构信息

Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA.

出版信息

Biophys J. 2006 Mar 15;90(6):1961-78. doi: 10.1529/biophysj.105.073874. Epub 2005 Dec 16.

Abstract

Signaling pathways respond to stimuli in a variety of ways, depending on the magnitude of the input and the physiological status of the cell. For instance, yeast can respond to pheromone stimulation in either a binary or graded fashion. Here we present single cell transcription data indicating that a transient binary response in which all cells eventually become activated is typical. Stochastic modeling of the biochemical steps that regulate activation of the mitogen-activated protein kinase Fus3 reveals that this portion of the pathway can account for the graded-to-binary conversion. To test the validity of the model, genetic approaches are used to alter expression levels of Msg5 and Ste7, two of the proteins that negatively and positively regulate Fus3, respectively. Single cell measurements of the genetically altered cells are shown to be consistent with predictions of the model. Finally, computational modeling is used to investigate the effects of protein turnover on the response of the pathway. We demonstrate that the inclusion of protein turnover can lead to sustained oscillations of protein concentrations in the absence of feedback regulation. Thus, protein turnover can profoundly influence the output of a signaling pathway.

摘要

信号通路根据输入的强度和细胞的生理状态,以多种方式对刺激做出反应。例如,酵母可以以二元或分级的方式对信息素刺激做出反应。在这里,我们展示了单细胞转录数据,表明所有细胞最终都会被激活的瞬时二元反应是典型的。对调节丝裂原活化蛋白激酶Fus3激活的生化步骤进行随机建模,结果表明该通路的这一部分可以解释从分级到二元的转换。为了测试模型的有效性,采用遗传学方法改变Msg5和Ste7的表达水平,这两种蛋白分别对Fus3起负调控和正调控作用。对基因改变后的细胞进行单细胞测量,结果显示与模型预测一致。最后,利用计算建模来研究蛋白质周转对通路反应的影响。我们证明,在没有反馈调节的情况下,纳入蛋白质周转会导致蛋白质浓度的持续振荡。因此,蛋白质周转可以深刻影响信号通路的输出。

相似文献

1
Bistability, stochasticity, and oscillations in the mitogen-activated protein kinase cascade.
Biophys J. 2006 Mar 15;90(6):1961-78. doi: 10.1529/biophysj.105.073874. Epub 2005 Dec 16.
3
MAPK specificity in the yeast pheromone response independent of transcriptional activation.
Curr Biol. 2001 Aug 21;11(16):1266-71. doi: 10.1016/s0960-9822(01)00370-0.
4
Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response.
J Biol Chem. 2017 Dec 15;292(50):20354-20361. doi: 10.1074/jbc.AC117.000548. Epub 2017 Nov 9.
6
How can yeast cells decide between three activated MAP kinase pathways? A model approach.
J Theor Biol. 2009 Apr 21;257(4):578-87. doi: 10.1016/j.jtbi.2009.01.015.
9
Regulation of cell signaling dynamics by the protein kinase-scaffold Ste5.
Mol Cell. 2008 Jun 6;30(5):649-56. doi: 10.1016/j.molcel.2008.04.016.

引用本文的文献

1
CellDynaMo-stochastic reaction-diffusion-dynamics model: Application to search-and-capture process of mitotic spindle assembly.
PLoS Comput Biol. 2022 Jun 3;18(6):e1010165. doi: 10.1371/journal.pcbi.1010165. eCollection 2022 Jun.
2
IDH2-mediated regulation of the biogenesis of the oxidative phosphorylation system.
Sci Adv. 2022 May 13;8(19):eabl8716. doi: 10.1126/sciadv.abl8716. Epub 2022 May 11.
3
Quantitative analysis of the yeast pheromone pathway.
Yeast. 2019 Aug;36(8):495-518. doi: 10.1002/yea.3395. Epub 2019 Jun 27.
4
Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response.
J Biol Chem. 2017 Dec 15;292(50):20354-20361. doi: 10.1074/jbc.AC117.000548. Epub 2017 Nov 9.
5
Minimal oscillating subnetwork in the Huang-Ferrell model of the MAPK cascade.
PLoS One. 2017 Jun 21;12(6):e0178457. doi: 10.1371/journal.pone.0178457. eCollection 2017.
6
Including Rebinding Reactions in Well-Mixed Models of Distributive Biochemical Reactions.
Biophys J. 2016 Nov 15;111(10):2317-2326. doi: 10.1016/j.bpj.2016.10.008.
7
ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS.
Multiscale Model Simul. 2016;14(2):923-963. doi: 10.1137/15M1034180. Epub 2016 Jun 29.
8
9
Spatio-temporal dynamics of a cell signal pathway with negative feedbacks: the MAPK/ERK pathway.
Eur Phys J E Soft Matter. 2016 Mar;39(3):28. doi: 10.1140/epje/i2016-16028-3. Epub 2016 Mar 21.

本文引用的文献

1
Exact stochastic simulation of coupled chemical reactions with delays.
J Chem Phys. 2007 Mar 28;126(12):124108. doi: 10.1063/1.2710253.
2
Stochasticity in gene expression: from theories to phenotypes.
Nat Rev Genet. 2005 Jun;6(6):451-64. doi: 10.1038/nrg1615.
3
Pheromone signaling mechanisms in yeast: a prototypical sex machine.
Science. 2004 Nov 26;306(5701):1508-9. doi: 10.1126/science.1104568.
6
Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades.
J Cell Biol. 2004 Feb 2;164(3):353-9. doi: 10.1083/jcb.200308060. Epub 2004 Jan 26.
7
Global analysis of protein expression in yeast.
Nature. 2003 Oct 16;425(6959):737-41. doi: 10.1038/nature02046.
9
Noise in eukaryotic gene expression.
Nature. 2003 Apr 10;422(6932):633-7. doi: 10.1038/nature01546.
10
Regulation of Ste7 ubiquitination by Ste11 phosphorylation and the Skp1-Cullin-F-box complex.
J Biol Chem. 2003 Jun 20;278(25):22284-9. doi: 10.1074/jbc.M301272200. Epub 2003 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验