Nazli Aisha, Wang Arthur, Steen Oren, Prescott David, Lu Jun, Perdue Mary H, Söderholm Johan D, Sherman Philip M, McKay Derek M
Intestinal Disease Research Programme, HSC-3N5C, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada.
Infect Immun. 2006 Jan;74(1):192-201. doi: 10.1128/IAI.74.1.192-201.2006.
Substantial data implicate the commensal flora as triggers for the initiation of enteric inflammation or inflammatory disease relapse. We have shown that enteric epithelia under metabolic stress respond to nonpathogenic bacteria by increases in epithelial paracellular permeability and bacterial translocation. Here we assessed the structural basis of these findings. Confluent filter-grown monolayers of the human colonic T84 epithelial cell line were treated with 0.1 mM dinitrophenol (which uncouples oxidative phosphorylation) and noninvasive, nonpathogenic Escherichia coli (strain HB101, 10(6) CFU) with or without pretreatment with various pharmacological agents. At 24 h later, apoptosis, tight-junction protein expression, transepithelial resistance (TER; a marker of paracellular permeability), and bacterial internalization and translocation were assessed. Treatment with stabilizers of microtubules (i.e., colchicine), microfilaments (i.e., jasplakinolide) and clathrin-coated pit endocytosis (i.e., phenylarsine oxide) all failed to block DNP+E. coli HB101-induced reductions in TER but effectively prevented bacterial internalization and translocation. Neither the TER defect nor the enhanced bacterial translocations were a consequence of increased apoptosis. These data show that epithelial paracellular and transcellular (i.e., bacterial internalization) permeation pathways are controlled by different mechanisms. Thus, epithelia under metabolic stress increase their endocytotic activity that can result in a microtubule-, microfilament-dependent internalization and transcytosis of bacteria. We speculate that similar events in vivo would allow excess unprocessed antigen and bacteria into the mucosa and could evoke an inflammatory response by, for example, the activation of resident or recruited immune cells.
大量数据表明共生菌群是肠道炎症起始或炎症性疾病复发的触发因素。我们已经表明,处于代谢应激状态下的肠道上皮细胞会通过增加上皮细胞旁通透性和细菌易位来响应非致病性细菌。在此,我们评估了这些发现的结构基础。将人结肠T84上皮细胞系的汇合滤器生长单层细胞用0.1 mM二硝基苯酚(它使氧化磷酸化解偶联)和无创、非致病性大肠杆菌(HB101菌株,10⁶ CFU)处理,有或没有用各种药物进行预处理。24小时后,评估细胞凋亡、紧密连接蛋白表达、跨上皮电阻(TER;细胞旁通透性的标志物)以及细菌内化和易位情况。用微管稳定剂(即秋水仙碱)、微丝稳定剂(即茉莉酸甲酯)和网格蛋白包被小窝内吞作用抑制剂(即苯胂酸)处理均未能阻止二硝基苯酚+大肠杆菌HB101诱导的TER降低,但有效防止了细菌内化和易位。TER缺陷和增强的细菌易位都不是细胞凋亡增加的结果。这些数据表明上皮细胞旁和跨细胞(即细菌内化)渗透途径受不同机制控制。因此,处于代谢应激状态下的上皮细胞会增加其胞吞活性,这可能导致细菌的微管、微丝依赖性内化和转胞吞作用。我们推测,体内类似事件会使过量未处理的抗原和细菌进入黏膜,并可能通过例如激活驻留或募集的免疫细胞引发炎症反应。