Suppr超能文献

从纵向分类数据估计事件发生时间:多发性硬化症进展分析

Estimating Time to Event From Longitudinal Categorical Data: An Analysis of Multiple Sclerosis Progression.

作者信息

Mandel Micha, Gauthier Susan A, Guttmann Charles R G, Weiner Howard L, Betensky Rebecca A

机构信息

Micha Mandel is a postdoctoral fellow, Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 (

出版信息

J Am Stat Assoc. 2007 Dec;102(480):1254-1266. doi: 10.1198/016214507000000059.

Abstract

The expanded disability status scale (EDSS) is an ordinal score that measures progression in multiple sclerosis (MS). Progression is defined as reaching EDSS of a certain level (absolute progression) or increasing of one point of EDSS (relative progression). Survival methods for time to progression are not adequate for such data since they do not exploit the EDSS level at the end of follow-up. Instead, we suggest a Markov transitional model applicable for repeated categorical or ordinal data. This approach enables derivation of covariate-specific survival curves, obtained after estimation of the regression coefficients and manipulations of the resulting transition matrix. Large sample theory and resampling methods are employed to derive pointwise confidence intervals, which perform well in simulation. Methods for generating survival curves for time to EDSS of a certain level, time to increase of EDSS of at least one point, and time to two consecutive visits with EDSS greater than three are described explicitly. The regression models described are easily implemented using standard software packages. Survival curves are obtained from the regression results using packages that support simple matrix calculation. We present and demonstrate our method on data collected at the Partners MS center in Boston, MA. We apply our approach to progression defined by time to two consecutive visits with EDSS greater than three, and calculate crude (without covariates) and covariate-specific curves.

摘要

扩展残疾状态量表(EDSS)是一种用于衡量多发性硬化症(MS)病情进展的序贯评分。病情进展定义为达到特定EDSS水平(绝对进展)或EDSS增加1分(相对进展)。针对此类数据,传统的进展时间生存分析方法并不适用,因为它们没有利用随访结束时的EDSS水平。相反,我们建议使用适用于重复分类或序贯数据的马尔可夫转换模型。这种方法能够在估计回归系数并对所得转换矩阵进行操作后,推导出特定协变量的生存曲线。我们采用大样本理论和重采样方法来推导逐点置信区间,该方法在模拟中表现良好。文中详细描述了针对达到特定EDSS水平的时间、EDSS至少增加1分的时间以及连续两次就诊时EDSS大于3的时间生成生存曲线的方法。所描述的回归模型使用标准软件包即可轻松实现。生存曲线可通过支持简单矩阵计算的软件包从回归结果中获得。我们在马萨诸塞州波士顿的 Partners MS 中心收集的数据上展示并演示了我们的方法。我们将我们的方法应用于由连续两次就诊时EDSS大于3所定义的病情进展,并计算了粗生存率(无协变量)和特定协变量的曲线。

相似文献

1
Estimating Time to Event From Longitudinal Categorical Data: An Analysis of Multiple Sclerosis Progression.
J Am Stat Assoc. 2007 Dec;102(480):1254-1266. doi: 10.1198/016214507000000059.
3
Predicting short-term disability in multiple sclerosis.
Neurology. 2007 Jun 12;68(24):2059-65. doi: 10.1212/01.wnl.0000264890.97479.b1.
6
Time between expanded disability status scale (EDSS) scores.
Mult Scler Relat Disord. 2019 May;30:98-103. doi: 10.1016/j.msard.2019.02.007. Epub 2019 Feb 5.
7
Disability weight for each level of the Expanded Disability Status Scale in multiple sclerosis.
Mult Scler. 2014 Aug;20(9):1217-23. doi: 10.1177/1352458513518259. Epub 2014 Jan 7.
8
Mitoxantrone: a review of its use in multiple sclerosis.
CNS Drugs. 2004;18(6):379-96. doi: 10.2165/00023210-200418060-00010.
10
Contemporary study of multiple sclerosis disability in South East Wales.
J Neurol Neurosurg Psychiatry. 2023 Apr;94(4):272-279. doi: 10.1136/jnnp-2022-330013. Epub 2022 Nov 3.

引用本文的文献

1
A scalable approach for continuous time Markov models with covariates.
Biostatistics. 2024 Jul 1;25(3):681-701. doi: 10.1093/biostatistics/kxad012.
3
4
Psychiatric comorbidity is associated with disability progression in multiple sclerosis.
Neurology. 2018 Apr 10;90(15):e1316-e1323. doi: 10.1212/WNL.0000000000005302. Epub 2018 Mar 9.
7
Simultaneous Confidence Intervals Based on the Percentile Bootstrap Approach.
Comput Stat Data Anal. 2008 Jan 10;52(4):2158-2165. doi: 10.1016/j.csda.2007.07.005.

本文引用的文献

1
A model for the comprehensive investigation of a chronic autoimmune disease: the multiple sclerosis CLIMB study.
Autoimmun Rev. 2006 Oct;5(8):532-6. doi: 10.1016/j.autrev.2006.02.012. Epub 2006 Mar 22.
2
Not every patient with multiple sclerosis should be treated at time of diagnosis.
Arch Neurol. 2006 Apr;63(4):611-4. doi: 10.1001/archneur.63.4.611.
3
Modeling animals' behavioral response by Markov chain models for capture-recapture experiments.
Biometrics. 2005 Dec;61(4):1010-7. doi: 10.1111/j.1541-0420.2005.00372.x.
5
Use of a Markov transition model to analyse longitudinal low-back pain data.
Stat Methods Med Res. 2003 Aug;12(4):321-31. doi: 10.1191/0962280203sm321ra.
7
Marginalized transition models and likelihood inference for longitudinal categorical data.
Biometrics. 2002 Jun;58(2):342-51. doi: 10.1111/j.0006-341x.2002.00342.x.
8
Relapses and progression of disability in multiple sclerosis.
N Engl J Med. 2000 Nov 16;343(20):1430-8. doi: 10.1056/NEJM200011163432001.
10
Modelling ordered categorical data: recent advances and future challenges.
Stat Med. 1999;18(17-18):2191-207. doi: 10.1002/(sici)1097-0258(19990915/30)18:17/18<2191::aid-sim249>3.0.co;2-m.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验