Batinić-Haberle Ines, Spasojević Ivan, Stevens Robert D, Bondurant Bruce, Okado-Matsumoto Ayako, Fridovich Irwin, Vujasković Zeljko, Dewhirst Mark W
Department of Radiation Oncology, Duke University Medical School, Durham, NC 27710, USA.
Dalton Trans. 2006 Jan 28(4):617-24. doi: 10.1039/b513761f. Epub 2005 Dec 19.
Two new tri(ethyleneglycol)-derivatized Mn(III) porphyrins were synthesized with the aim of increasing their bioavailability, and blood-circulating half-life. These are Mn(III) tetrakis(N-(1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)pyridinium-2-yl)porphyrin, MnTTEG-2-PyP5+ and Mn(III) tetrakis(N,N'-di(1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)imidazolium-2-yl)porphyrin, MnTDTEG-2-ImP5+. Both porphyrins have ortho pyridyl or di-ortho imidazolyl electron-withdrawing substituents at meso positions of the porphyrin ring that assure highly positive metal centered redox potentials, E1/2 = +250 mV vs. NHE for MnTTEG-2-PyP5+ and E1/2 = + 412 mV vs. NHE for MnTDTEG-2-ImP5+. As expected, from established E1/2 vs. log kcat(O2 -) structure-activity relationships for metalloporphyrins (Batinic-Haberle et al., Inorg. Chem., 1999, 38, 4011), both compounds exhibit higher SOD-like activity than any meso-substituted Mn(III) porphyrins-based SOD mimic thus far, log kcat = 8.11 (MnTTEG-2-PyP5+) and log kcat = 8.55 (MnTDTEG-2-ImP5+), the former being only a few-fold less potent in disproportionating O2- than the SOD enzyme itself. The new porphyrins are stable to both acid and EDTA, and non toxic to E. coli. Despite elongated substituents, which could potentially lower their ability to cross the cell wall, MnTTEG-2-PyP5+ and MnTDTEG-2-ImP5+ exhibit similar protection of SOD-deficient E. coli as their much smaller ethyl analogues MnTE-2-PyP5+ and MnTDE-2-ImP5+, respectively. Consequently, with anticipated increased blood-circulating half-life, these new Mn(III) porphyrins may be more effective in ameliorating oxidative stress injuries than ethyl analogues that have been already successfully explored in vivo.
合成了两种新的三(乙二醇)衍生化的锰(III)卟啉,目的是提高它们的生物利用度和血液循环半衰期。它们分别是锰(III)四(N-(1-(2-(2-(2-甲氧基乙氧基)乙氧基)乙基)吡啶鎓-2-基)卟啉,即MnTTEG-2-PyP5 +和锰(III)四(N,N'-二(1-(2-(2-(2-甲氧基乙氧基)乙氧基)乙基)咪唑鎓-2-基)卟啉,即MnTDTEG-2-ImP5 +。两种卟啉在卟啉环的中位都有邻吡啶基或二邻咪唑基吸电子取代基,这确保了以金属为中心的高正氧化还原电位,相对于标准氢电极(NHE),MnTTEG-2-PyP5 +的E1/2 = +25 mV,MnTDTEG-2-ImP5 +的E1/2 = + 412 mV。正如从已建立的金属卟啉的E1/2与log kcat(O₂⁻)结构-活性关系所预期的那样(Batinic-Haberle等人, 《无机化学》, 1999年, 38卷, 4011页),这两种化合物都表现出比迄今为止任何基于中位取代的锰(III)卟啉的超氧化物歧化酶(SOD)模拟物更高的SOD样活性,log kcat = 8.11(MnTTEG-2-PyP5 +)和log kcat = 8.55(MnTDTEG-2-ImP5 +),前者在歧化O₂⁻方面的效力仅比SOD酶本身低几倍。新的卟啉对酸和乙二胺四乙酸(EDTA)都稳定,并且对大肠杆菌无毒。尽管取代基延长可能会潜在地降低它们穿过细胞壁的能力,但MnTTEG-2-PyP5 +和MnTDTEG-2-ImP5 +分别对缺乏SOD的大肠杆菌表现出与它们小得多的乙基类似物MnTE-2-PyP5 +和MnTDE-2-ImP5 +相似的保护作用。因此,随着预期的血液循环半衰期增加,这些新的锰(III)卟啉在改善氧化应激损伤方面可能比已经在体内成功探索的乙基类似物更有效。