Suppr超能文献

The structure of a yeast hexokinase monomer and its complexes with substrates at 2.7-A resolution.

作者信息

Fletterick R J, Bates D J, Steitz T A

出版信息

Proc Natl Acad Sci U S A. 1975 Jan;72(1):38-42. doi: 10.1073/pnas.72.1.38.

Abstract

From a 2.7-A resolution electron density map we have built a model of the polypeptide backbone of a monomer of yeast hexokinase B (EC 2.7.1.1). This map was obtained from a third crystal form of hexokinase, called BIII, which exhibits space group P212121 and which contains only one monomer per asymmetric unit. The 51,000 molecular weight monomer has an elongated shape (80 A by 55 A by 50 A) and is divided into two lobes by a deep central cleft. The polypeptide chain is folded into three structural domains, one of which is predominantly alpha-helical and two of which each contain a beta-pleated sheet flanked by alpha-helices. Both glucose and AMP bind to these crystals and produce significant alterations in the protein structure. Glucose binds in the deep cleft, as was observed previously in the BII crystal of the dimeric enzyme. AMP, however, binds to a site that is different from the major intersubunit ATP binding site observed in the crystalline dimer. The AMP is found near one of the beta-pleated sheets. From our current interpretation of this electron density map we conclude that neither of the two nucleotide binding regions has the same structure as has been observed for the nucleotide binding regions of the dehydrogenases, adenylate kinase, and phosphoglycerate kinase, although some similarities exist.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e242/432235/976f9b8294cd/pnas00044-0046-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验