Suppr超能文献

高剂量压缩负荷可减少脊髓损伤患者的骨矿物质丢失。

High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury.

机构信息

Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242-1190, USA.

出版信息

Osteoporos Int. 2012 Sep;23(9):2335-46. doi: 10.1007/s00198-011-1879-4. Epub 2011 Dec 21.

Abstract

UNLABELLED

People with spinal cord injury (SCI) lose bone and muscle integrity after their injury. Early doses of stress, applied through electrically induced muscle contractions, preserved bone density at high-risk sites. Appropriately prescribed stress early after the injury may be an important consideration to prevent bone loss after SCI.

INTRODUCTION

Skeletal muscle force can deliver high compressive loads to bones of people with spinal cord injury (SCI). The effective osteogenic dose of load for the distal femur, a chief site of fracture, is unknown. The purpose of this study is to compare three doses of bone compressive loads at the distal femur in individuals with complete SCI who receive a novel stand training intervention.

METHODS

Seven participants performed unilateral quadriceps stimulation in supported stance [150% body weight (BW) compressive load-"High Dose" while opposite leg received 40% BW-"Low Dose"]. Five participants stood passively without applying quadriceps electrical stimulation to either leg (40% BW load-"Low Dose"). Fifteen participants performed no standing (0% BW load-"Untrained") and 14 individuals without SCI provided normative data. Participants underwent bone mineral density (BMD) assessment between one and six times over a 3-year training protocol.

RESULTS

BMD for the High Dose group significantly exceeded BMD for both the Low Dose and the Untrained groups (p < 0.05). No significant difference existed between the Low Dose and Untrained groups (p > 0.05), indicating that BMD for participants performing passive stance did not differ from individuals who performed no standing. High-resolution CT imaging of one High Dose participant revealed 86% higher BMD and 67% higher trabecular width in the High Dose limb.

CONCLUSION

Over 3 years of training, 150% BW compressive load in upright stance significantly attenuated BMD decline when compared to passive standing or to no standing. High-resolution CT indicated that trabecular architecture was preserved by the 150% BW dose of load.

摘要

目的

本研究旨在比较三种不同剂量的骨压缩负荷对接受新型站立训练干预的完全性脊髓损伤(SCI)个体的股骨远端的影响。

方法

7 名参与者在支撑位进行单侧股四头肌刺激[150%体重(BW)压缩负荷-“高剂量”,同时对侧腿接受 40% BW-“低剂量”]。5 名参与者在不向任何一条腿施加股四头肌电刺激的情况下被动站立(40% BW 负荷-“低剂量”)。15 名参与者不进行站立(0% BW 负荷-“未训练”),14 名无 SCI 的个体提供了参考数据。参与者在 3 年的训练方案中接受了 1 到 6 次骨密度(BMD)评估。

结果

高剂量组的 BMD 显著高于低剂量组和未训练组(p<0.05)。低剂量组和未训练组之间没有显著差异(p>0.05),表明进行被动站立的参与者的 BMD 与不进行站立的个体没有差异。一名高剂量组参与者的高分辨率 CT 成像显示,高剂量肢体的 BMD 增加了 86%,小梁宽度增加了 67%。

结论

在 3 年的训练中,与被动站立或不站立相比,直立位的 150% BW 压缩负荷显著减缓了 BMD 的下降。高分辨率 CT 表明,150% BW 剂量的负荷保持了小梁结构的完整性。

相似文献

1
High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury.
Osteoporos Int. 2012 Sep;23(9):2335-46. doi: 10.1007/s00198-011-1879-4. Epub 2011 Dec 21.
2
Electrically induced muscle contractions influence bone density decline after spinal cord injury.
Spine (Phila Pa 1976). 2006 Mar 1;31(5):548-53. doi: 10.1097/01.brs.0000201303.49308.a8.
3
Active-resisted stance modulates regional bone mineral density in humans with spinal cord injury.
J Spinal Cord Med. 2013 May;36(3):191-9. doi: 10.1179/2045772313Y.0000000092.
4
Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb.
Osteoporos Int. 2016 Mar;27(3):1149-1160. doi: 10.1007/s00198-015-3326-4. Epub 2015 Sep 22.
6
Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.
J Neurophysiol. 2006 Apr;95(4):2380-90. doi: 10.1152/jn.01181.2005. Epub 2006 Jan 11.
7
Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury.
J Musculoskelet Neuronal Interact. 2008 Jul-Sep;8(3):227-38.

引用本文的文献

1
2
Poor bone health in Duchenne muscular dystrophy: a multifactorial problem beyond corticosteroids and loss of ambulation.
Front Endocrinol (Lausanne). 2024 Nov 28;15:1398050. doi: 10.3389/fendo.2024.1398050. eCollection 2024.
5
Low-frequency electrically induced exercise after spinal cord injury: Physiologic challenge to skeletal muscle and feasibility for long-term use.
J Spinal Cord Med. 2024 Nov;47(6):1026-1032. doi: 10.1080/10790268.2024.2338295. Epub 2024 Apr 15.
7
Loss of lower extremity bone mineral density 1 year after denosumab is discontinued in persons with subacute spinal cord injury.
Osteoporos Int. 2023 Apr;34(4):741-748. doi: 10.1007/s00198-023-06679-w. Epub 2023 Feb 3.
8
Sporting activity does not fully prevent bone demineralization at the impaired hip in athletes with amputation.
Front Physiol. 2022 Oct 19;13:934622. doi: 10.3389/fphys.2022.934622. eCollection 2022.
9
Effect of Athletic Training on Fatigue During Neuromuscular Electrical Stimulation.
Front Sports Act Living. 2022 Jun 14;4:894395. doi: 10.3389/fspor.2022.894395. eCollection 2022.

本文引用的文献

1
Factors influencing bone loss in paraplegia.
Hippokratia. 2011 Jan;15(1):54-9.
2
Effects of cycling and/or electrical stimulation on bone mineral density in children with spinal cord injury.
Spinal Cord. 2011 Aug;49(8):917-23. doi: 10.1038/sc.2011.19. Epub 2011 Mar 22.
4
Osteoporosis in persons with spinal cord injury: the need for a targeted therapeutic education.
Arch Phys Med Rehabil. 2011 Jan;92(1):59-67. doi: 10.1016/j.apmr.2010.09.019.
5
Intensive electrical stimulation attenuates femoral bone loss in acute spinal cord injury.
PM R. 2010 Dec;2(12):1080-7. doi: 10.1016/j.pmrj.2010.08.003.
6
Volumetric topological analysis: a novel approach for trabecular bone classification on the continuum between plates and rods.
IEEE Trans Med Imaging. 2010 Nov;29(11):1821-38. doi: 10.1109/TMI.2010.2050779. Epub 2010 Jun 17.
9
Longitudinal changes in femur bone mineral density after spinal cord injury: effects of slice placement and peel method.
Osteoporos Int. 2010 Jun;21(6):985-95. doi: 10.1007/s00198-009-1044-5. Epub 2009 Aug 26.
10
Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury.
J Musculoskelet Neuronal Interact. 2008 Jul-Sep;8(3):227-38.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验