Bieling Peter, Telley Ivo A, Piehler Jacob, Surrey Thomas
Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
EMBO Rep. 2008 Nov;9(11):1121-7. doi: 10.1038/embor.2008.169. Epub 2008 Sep 19.
Processive motor proteins are stochastic steppers that perform actual mechanical steps for only a minor fraction of the time they are bound to the filament track. Motors usually work in teams and therefore the question arises whether the stochasticity of stepping can cause mutual interference when motors are mechanically coupled. We used biocompatible surfaces to immobilize processive kinesin-1 motors at controlled surface densities in a mechanically well-defined way. This helped us to study quantitatively how mechanical coupling between motors affects the efficiency of collective microtubule transport. We found that kinesin-1 constructs that lack most of the non-motor sequence slow each other down when collectively transporting a microtubule, depending on the number of interacting motors. This negative interference observed for a motor ensemble can be explained quantitatively by a mathematical model using the known physical properties of individual molecules of kinesin-1. The non-motor extension of kinesin-1 reduces this mutual interference, indicating that loose mechanical coupling between motors is required for efficient transport by ensembles of processive motors.
进行性运动蛋白是随机步进器,它们在与细丝轨道结合的时间中,只有一小部分时间执行实际的机械步进。运动蛋白通常协同工作,因此会出现这样的问题:当运动蛋白机械耦合时,步进的随机性是否会导致相互干扰。我们使用生物相容性表面,以机械上明确的方式将进行性驱动蛋白-1运动蛋白固定在可控的表面密度上。这有助于我们定量研究运动蛋白之间的机械耦合如何影响集体微管运输的效率。我们发现,缺乏大部分非运动序列的驱动蛋白-1构建体在集体运输微管时会相互减速,这取决于相互作用的运动蛋白数量。对于一组运动蛋白观察到的这种负干扰,可以通过一个数学模型,利用驱动蛋白-1单个分子的已知物理特性进行定量解释。驱动蛋白-1的非运动延伸减少了这种相互干扰,表明进行性运动蛋白群体进行高效运输需要运动蛋白之间松散的机械耦合。