Suppr超能文献

通过原子力显微镜/荧光成像联用揭示细胞膜结构域的拓扑结构

Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging.

作者信息

Frankel D J, Pfeiffer J R, Surviladze Z, Johnson A E, Oliver J M, Wilson B S, Burns A R

机构信息

Biomolecular Materials and Interfaces Department, MS1413 Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.

出版信息

Biophys J. 2006 Apr 1;90(7):2404-13. doi: 10.1529/biophysj.105.073692. Epub 2006 Jan 13.

Abstract

Simultaneous atomic force microscopy (AFM) and confocal fluorescence imaging were used to observe in aqueous buffer the three-dimensional landscape of the inner surface of membrane sheets stripped from fixed tumor mast cells. The AFM images reveal prominent, irregularly shaped raised domains that label with fluorescent markers for both resting and activated immunoglobin E receptors (FcepsilonRI), as well as with cholera toxin-aggregated GM1 and clathrin. The latter suggests that coated pits bud from these regions. These features are interspersed with flatter regions of membrane and are frequently surrounded and interconnected by cytoskeletal assemblies. The raised domains shrink in height by approximately 50% when cholesterol is extracted with methyl-beta-cyclodextrin. Based on composition, the raised domains seen by AFM correspond to the cholesterol-enriched dark patches observed in transmission electron microscopy (TEM). These patches were previously identified as sites of signaling and endocytosis based on their localization of activated FcepsilonRI, at least 10 associated signaling molecules, and the presence of clathrin-coated pits. Overall the data suggest that signaling and endocytosis occur in mast cells from raised membrane regions that depend on cholesterol for their integrity and may be organized in specific relationship with the cortical cytoskeleton.

摘要

同时使用原子力显微镜(AFM)和共聚焦荧光成像技术,在水性缓冲液中观察从固定的肿瘤肥大细胞剥离的膜片内表面的三维形貌。AFM图像显示出突出的、形状不规则的凸起区域,这些区域可被静息和活化的免疫球蛋白E受体(FcepsilonRI)的荧光标记物标记,也可被霍乱毒素聚集的GM1和网格蛋白标记。后者表明有被小窝从这些区域出芽。这些特征散布在较平坦的膜区域中,并经常被细胞骨架组装体包围和相互连接。当用甲基-β-环糊精提取胆固醇时,凸起区域的高度会收缩约50%。基于组成,AFM观察到的凸起区域对应于透射电子显微镜(TEM)中观察到的富含胆固醇的暗斑。这些斑块先前根据活化的FcepsilonRI的定位、至少10种相关信号分子以及网格蛋白包被小窝的存在,被确定为信号传导和内吞作用的位点。总体而言,数据表明信号传导和内吞作用发生在肥大细胞的凸起膜区域,这些区域的完整性依赖于胆固醇,并且可能与皮质细胞骨架以特定关系组织起来。

相似文献

1
Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging.
Biophys J. 2006 Apr 1;90(7):2404-13. doi: 10.1529/biophysj.105.073692. Epub 2006 Jan 13.
2
Visualizing clathrin-mediated IgE receptor internalization by electron and atomic force microscopy.
Methods Mol Biol. 2008;440:235-45. doi: 10.1007/978-1-59745-178-9_18.
4
FcepsilonRI signaling observed from the inside of the mast cell membrane.
Mol Immunol. 2002 Sep;38(16-18):1259-68. doi: 10.1016/s0161-5890(02)00073-1.
5
Identifying dynamic membrane structures with atomic-force microscopy and confocal imaging.
Microsc Microanal. 2014 Apr;20(2):514-20. doi: 10.1017/S1431927613014098. Epub 2014 Feb 13.
6
Observing FcepsilonRI signaling from the inside of the mast cell membrane.
J Cell Biol. 2000 May 29;149(5):1131-42. doi: 10.1083/jcb.149.5.1131.
7
Atomic force microscopy of microvillous cell surface dynamics at fixed and living alveolar type II cells.
Anal Bioanal Chem. 2011 Mar;399(7):2369-78. doi: 10.1007/s00216-010-4407-z. Epub 2010 Nov 30.

引用本文的文献

1
Cell membrane sample preparation method of combined AFM and dSTORM analysis.
Biophys Rep. 2022 Aug 31;8(4):183-192. doi: 10.52601/bpr.2022.220004.
2
Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates?
Pharmaceutics. 2022 Nov 22;14(12):2559. doi: 10.3390/pharmaceutics14122559.
3
Recent progress of surface-enhanced Raman spectroscopy for subcellular compartment analysis.
Theranostics. 2021 Mar 4;11(10):4872-4893. doi: 10.7150/thno.56409. eCollection 2021.
4
Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property.
J Cell Physiol. 2018 Aug;233(8):5908-5919. doi: 10.1002/jcp.26400. Epub 2018 Feb 27.
5
Tissue Force Programs Cell Fate and Tumor Aggression.
Cancer Discov. 2017 Nov;7(11):1224-1237. doi: 10.1158/2159-8290.CD-16-0733. Epub 2017 Oct 16.
6
Progress in the Correlative Atomic Force Microscopy and Optical Microscopy.
Sensors (Basel). 2017 Apr 24;17(4):938. doi: 10.3390/s17040938.
7
Multi-protein assemblies underlie the mesoscale organization of the plasma membrane.
Nat Commun. 2014 Jul 25;5:4509. doi: 10.1038/ncomms5509.
9
Regulation from within: the cytoskeleton in transmembrane signaling.
Trends Cell Biol. 2012 Oct;22(10):515-26. doi: 10.1016/j.tcb.2012.07.006. Epub 2012 Aug 20.
10
Spatio-temporal signaling in mast cells.
Adv Exp Med Biol. 2011;716:91-106. doi: 10.1007/978-1-4419-9533-9_6.

本文引用的文献

3
The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation.
Proc Natl Acad Sci U S A. 2005 May 17;102(20):7139-44. doi: 10.1073/pnas.0500556102. Epub 2005 May 6.
5
Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels.
Biophys J. 2004 Dec;87(6):3850-61. doi: 10.1529/biophysj.104.043273. Epub 2004 Oct 1.
6
Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques.
Biophys J. 2004 Jun;86(6):4075-93. doi: 10.1529/biophysj.103.035717.
7
Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes.
Mol Biol Cell. 2004 Jun;15(6):2580-92. doi: 10.1091/mbc.e03-08-0574. Epub 2004 Mar 19.
8
Lipid rafts make for slippery platforms.
J Cell Biol. 2003 Aug 4;162(3):365-70. doi: 10.1083/jcb.200307087. Epub 2003 Jul 28.
9
Dynamic, yet structured: The cell membrane three decades after the Singer-Nicolson model.
Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8053-8. doi: 10.1073/pnas.1332550100. Epub 2003 Jun 27.
10
Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy.
Biophys J. 2003 Mar;84(3):1827-32. doi: 10.1016/s0006-3495(03)74990-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验