Tamoi Masahiro, Nagaoka Miki, Miyagawa Yoshiko, Shigeoka Shigeru
Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nara, Japan.
Plant Cell Physiol. 2006 Mar;47(3):380-90. doi: 10.1093/pcp/pcj004. Epub 2006 Jan 13.
To clarify the contributions of fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) separately to the carbon flux in the Calvin cycle, we generated transgenic tobacco plants expressing cyanobacterial FBPase-II in chloroplasts (TpF) or Chlamydomonas SBPase in chloroplasts (TpS). In TpF-11 plants with 2.3-fold higher FBPase activity and in TpS-11 and TpS-10 plants with 1.6- and 4.3-fold higher SBPase activity in chloroplasts compared with the wild-type plants, the amount of final dry matter was approximately 1.3-, 1.5- and 1.5-fold higher, respectively, than that of the wild-type plants. At 1,500 micromol m(-2) s(-1), the photosynthetic activities of TpF-11, TpS-11 and TpS-10 were 1.15-, 1.27- and 1.23-fold higher, respectively, than that of the wild-type plants. The in vivo activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the level of ribulose-1,5-bisphosphate (RuBP) in TpF-11, TpS-10 and TpS-11 were significantly higher than those in the wild-type plants. However, the transgenic plant TpF-9 which had a 1.7-fold higher level of FBPase activity showed the same phenotype as the wild-type plant, except for the increase of starch content in the source leaves. TpS-11 and TpS-10 plants with 1.6- and 4.3-fold higher SBPase activity, respectively, showed an increase in the photosynthetic CO(2) fixation, growth rate, RuBP contents and Rubisco activation state, while TpS-2 plants with 1.3-fold higher SBPase showed the same phenotype as the wild-type plants. These data indicated that the enhancement of either a >1.7-fold increase of FBPase or a 1.3-fold increase of SBPase in the chloroplasts had a marked positive effect on photosynthesis, that SBPase is the most important factor for the RuBP regeneration in the Calvin cycle and that FBPase contributes to the partitioning of the fixed carbon for RuBP regeneration or starch synthesis.
为了分别阐明1,6 - 二磷酸果糖磷酸酶(FBPase)和景天庚酮糖 - 1,7 - 二磷酸酶(SBPase)对卡尔文循环中碳通量的贡献,我们培育了在叶绿体中表达蓝藻FBPase - II的转基因烟草植株(TpF)或在叶绿体中表达衣藻SBPase的转基因烟草植株(TpS)。与野生型植株相比,TpF - 11植株的FBPase活性高2.3倍,TpS - 11和TpS - 10植株叶绿体中的SBPase活性分别高1.6倍和4.3倍,其最终干物质含量分别比野生型植株高出约1.3倍、1.5倍和1.5倍。在光照强度为1500微摩尔·平方米⁻²·秒⁻¹时,TpF - 11、TpS - 11和TpS - 10的光合活性分别比野生型植株高1.15倍、1.27倍和1.23倍。TpF - 11、TpS - 10和TpS - 11中1,5 - 二磷酸核酮糖羧化酶/加氧酶(Rubisco)的体内活化状态以及1,5 - 二磷酸核酮糖(RuBP)的水平显著高于野生型植株。然而,FBPase活性高1.7倍的转基因植株TpF - 9除了源叶中淀粉含量增加外,表现出与野生型植株相同的表型。SBPase活性分别高1.6倍和4.3倍的TpS - 11和TpS - 10植株在光合CO₂固定、生长速率、RuBP含量和Rubisco活化状态方面有所增加,而SBPase活性高1.3倍的TpS - 2植株表现出与野生型植株相同的表型。这些数据表明,叶绿体中FBPase活性增加>1.7倍或SBPase活性增加1.3倍对光合作用均有显著的积极影响,SBPase是卡尔文循环中RuBP再生的最重要因素,且FBPase有助于固定碳用于RuBP再生或淀粉合成的分配。