Suppr超能文献

基于使用相对信念比测量证据的ROC分析。

ROC Analyses Based on Measuring Evidence Using the Relative Belief Ratio.

作者信息

Al-Labadi Luai, Evans Michael, Liang Qiaoyu

机构信息

Department of Mathematical and Computational Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.

Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada.

出版信息

Entropy (Basel). 2022 Nov 23;24(12):1710. doi: 10.3390/e24121710.

Abstract

ROC (Receiver Operating Characteristic) analyses are considered under a variety of assumptions concerning the distributions of a measurement in two populations. These include the binormal model as well as nonparametric models where little is assumed about the form of distributions. The methodology is based on a characterization of statistical evidence which is dependent on the specification of prior distributions for the unknown population distributions as well as for the relevant prevalence of the disease in a given population. In all cases, elicitation algorithms are provided to guide the selection of the priors. Inferences are derived for the AUC (Area Under the Curve), the cutoff used for classification as well as the error characteristics used to assess the quality of the classification.

摘要

在关于两个总体中测量值分布的各种假设下,考虑进行ROC(受试者工作特征)分析。这些假设包括双正态模型以及对分布形式假设很少的非参数模型。该方法基于对统计证据的一种刻画,这依赖于对未知总体分布以及给定总体中疾病相关患病率的先验分布的设定。在所有情况下,都提供了启发式算法来指导先验的选择。针对曲线下面积(AUC)、用于分类的临界值以及用于评估分类质量的误差特征进行了推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20f4/9777999/65251c528aae/entropy-24-01710-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验