Hwang Beom Seuk, Chen Zhen
Biostatistics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.
J Am Stat Assoc. 2015 Sep 1;110(511):923-934. doi: 10.1080/01621459.2015.1023806. Epub 2015 Apr 1.
In estimating ROC curves of multiple tests, some constraints may exist, either between the healthy and diseased populations within a test or between tests within a population. In this paper, we proposed an integrated modeling approach for ROC curves that jointly accounts for stochastic and variability orders. The stochastic order constrains the distributional centers of the diseased and healthy populations within a test, while the variability order constrains the distributional spreads of the tests within each of the populations. Under a Bayesian nonparametric framework, we used features of the Dirichlet process mixture to incorporate these order constraints in a natural way. We applied the proposed approach to data from the Physician Reliability Study that investigated the accuracy of diagnosing endometriosis using different clinical information. To address the issue of no gold standard in the real data, we used a sensitivity analysis approach that exploited diagnosis from a panel of experts. To demonstrate the performance of the methodology, we conducted simulation studies with varying sample sizes, distributional assumptions and order constraints. Supplementary materials for this article are available online.
在估计多个测试的ROC曲线时,可能存在一些约束条件,这些约束条件可能存在于一个测试中的健康人群和患病人群之间,或者存在于一个总体中的不同测试之间。在本文中,我们提出了一种用于ROC曲线的综合建模方法,该方法联合考虑了随机序和变异性序。随机序约束了一个测试中患病和健康人群的分布中心,而变异性序约束了每个总体中不同测试的分布离散程度。在贝叶斯非参数框架下,我们利用狄利克雷过程混合的特征以自然的方式纳入这些序约束。我们将所提出的方法应用于医师可靠性研究的数据,该研究使用不同的临床信息来调查子宫内膜异位症诊断的准确性。为了解决实际数据中没有金标准的问题,我们使用了一种利用专家小组诊断结果的敏感性分析方法。为了证明该方法的性能,我们进行了不同样本量、分布假设和序约束的模拟研究。本文的补充材料可在网上获取。