Suppr超能文献

赞重新构建的人工图像:在视觉建模中使用自然图像数据库时需谨慎。

In Praise of Artifice Reloaded: Caution With Natural Image Databases in Modeling Vision.

作者信息

Martinez-Garcia Marina, Bertalmío Marcelo, Malo Jesús

机构信息

Image Processing Lab, Universitat de València Valencia, Spain.

CSIC, Instituto de Neurociencias Alicante, Spain.

出版信息

Front Neurosci. 2019 Feb 18;13:8. doi: 10.3389/fnins.2019.00008. eCollection 2019.

Abstract

Subjective image quality databases are a major source of raw data on how the visual system works in . These databases describe the sensitivity of many observers to a wide range of distortions of different nature and intensity seen on top of a variety of natural images. Data of this kind seems to open a number of possibilities for the vision scientist to check the models in realistic scenarios. However, while these natural databases are great benchmarks for models developed in some other way (e.g., by using the well-controlled of traditional psychophysics), they should be carefully used when trying to fit vision models. Given the high dimensionality of the image space, it is very likely that some basic phenomena are under-represented in the database. Therefore, a model fitted on these large-scale natural databases will not reproduce these under-represented basic phenomena that could otherwise be easily illustrated with well selected artificial stimuli. In this work we study a specific example of the above statement. A standard cortical model using wavelets and divisive normalization tuned to reproduce subjective opinion on a large image quality dataset fails to reproduce basic cross-masking. Here we outline a solution for this problem by using artificial stimuli and by proposing a modification that makes the model easier to tune. Then, we show that the modified model is still competitive in the large-scale database. Our simulations with these artificial stimuli show that when using steerable wavelets, the conventional unit norm Gaussian kernels in divisive normalization should be multiplied by high-pass filters to reproduce basic trends in masking. Basic visual phenomena may be misrepresented in large natural image datasets but this can be solved with model-interpretable stimuli. This is an additional argument in line with Rust and Movshon (2005).

摘要

主观图像质量数据库是关于视觉系统如何工作的原始数据的主要来源。这些数据库描述了许多观察者对在各种自然图像之上看到的不同性质和强度的广泛失真的敏感度。这类数据似乎为视觉科学家在现实场景中检验模型提供了多种可能性。然而,虽然这些自然数据库是用其他方式(例如,通过使用传统心理物理学的严格控制)开发的模型的很好的基准,但在尝试拟合视觉模型时应谨慎使用。鉴于图像空间的高维度,很可能数据库中一些基本现象的代表性不足。因此,基于这些大规模自然数据库拟合的模型将无法再现这些代表性不足的基本现象,而这些现象用精心挑选的人工刺激原本可以很容易地说明。在这项工作中,我们研究上述陈述的一个具体例子。一个使用小波和归一化除法进行调整以在大型图像质量数据集上再现主观意见的标准皮质模型无法再现基本的交叉掩蔽。在这里,我们通过使用人工刺激并提出一种使模型更易于调整的修改方案来概述这个问题的解决方案。然后,我们表明修改后的模型在大规模数据库中仍然具有竞争力。我们使用这些人工刺激的模拟表明,当使用可操纵小波时,归一化除法中传统的单位范数高斯核应乘以高通滤波器以再现掩蔽的基本趋势。基本视觉现象在大型自然图像数据集中可能会被错误表示,但这可以通过模型可解释的刺激来解决。这是与拉斯和莫夫尚(2005年)一致的另一个论据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b09/6414813/f1b3ffb8736a/fnins-13-00008-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验