Suppr超能文献

酵母蛋白质相互作用网络中的稳定进化信号

Stable evolutionary signal in a yeast protein interaction network.

作者信息

Wuchty Stefan, Barabási Albert-Laszlo, Ferdig Michael T

机构信息

Northwestern Institute on Complexity, Chambers Hall, Northwestern University, Evanston, IL 60202, USA.

出版信息

BMC Evol Biol. 2006 Jan 30;6:8. doi: 10.1186/1471-2148-6-8.

Abstract

BACKGROUND

The recently emerged protein interaction network paradigm can provide novel and important insights into the innerworkings of a cell. Yet, the heavy burden of both false positive and false negative protein-protein interaction data casts doubt on the broader usefulness of these interaction sets. Approaches focusing on one-protein-at-a-time have been powerfully employed to demonstrate the high degree of conservation of proteins participating in numerous interactions; here, we expand his 'node' focused paradigm to investigate the relative persistence of 'link' based evolutionary signals in a protein interaction network of S. cerevisiae and point out the value of this relatively untapped source of information.

RESULTS

The trend for highly connected proteins to be preferably conserved in evolution is stable, even in the context of tremendous noise in the underlying protein interactions as well as in the assignment of orthology among five higher eukaryotes. We find that local clustering around interactions correlates with preferred evolutionary conservation of the participating proteins; furthermore the correlation between high local clustering and evolutionary conservation is accompanied by a stable elevated degree of coexpression of the interacting proteins. We use this conserved interaction data, combined with P. falciparum/Yeast orthologs, as proof-of-principle that high-order network topology can be used comparatively to deduce local network structure in non-model organisms.

CONCLUSION

High local clustering is a criterion for the reliability of an interaction and coincides with preferred evolutionary conservation and significant coexpression. These strong and stable correlations indicate that evolutionary units go beyond a single protein to include the interactions among them. In particular, the stability of these signals in the face of extreme noise suggests that empirical protein interaction data can be integrated with orthologous clustering around these protein interactions to reliably infer local network structures in non-model organisms.

摘要

背景

最近出现的蛋白质相互作用网络范式能够为细胞的内部运作提供新颖且重要的见解。然而,蛋白质 - 蛋白质相互作用数据中假阳性和假阴性的沉重负担使人对这些相互作用集的更广泛用途产生怀疑。一次关注一种蛋白质的方法已被有力地用于证明参与众多相互作用的蛋白质具有高度保守性;在这里,我们扩展了这种以“节点”为重点的范式,以研究酿酒酵母蛋白质相互作用网络中基于“链接”的进化信号的相对持久性,并指出这一相对未被充分利用的信息源的价值。

结果

即使在潜在蛋白质相互作用以及五种高等真核生物之间直系同源性分配存在巨大噪声的情况下,高度连接的蛋白质在进化中更倾向于保守的趋势依然稳定。我们发现相互作用周围的局部聚类与参与蛋白质的优先进化保守性相关;此外,高局部聚类与进化保守性之间的相关性伴随着相互作用蛋白质共表达程度的稳定升高。我们利用这些保守的相互作用数据,结合恶性疟原虫/酵母直系同源物,作为原理证明,即高阶网络拓扑结构可用于比较推断非模式生物中的局部网络结构。

结论

高局部聚类是相互作用可靠性的一个标准,与优先进化保守性和显著共表达相吻合。这些强烈且稳定的相关性表明,进化单元不仅包括单个蛋白质,还包括它们之间的相互作用。特别是,这些信号在面对极端噪声时的稳定性表明,经验性蛋白质相互作用数据可以与围绕这些蛋白质相互作用的直系同源聚类相结合,以可靠地推断非模式生物中的局部网络结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/636a/1395346/8367cf3f51b9/1471-2148-6-8-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验