文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

On the evolution and development of morphological complexity: A view from gene regulatory networks.

作者信息

Hagolani Pascal F, Zimm Roland, Vroomans Renske, Salazar-Ciudad Isaac

机构信息

Evo-devo Helsinki community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.

Institute of Functional Genomics, École Normale Superieure, Lyon, France.

出版信息

PLoS Comput Biol. 2021 Feb 24;17(2):e1008570. doi: 10.1371/journal.pcbi.1008570. eCollection 2021 Feb.


DOI:10.1371/journal.pcbi.1008570
PMID:33626036
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7939363/
Abstract

How does morphological complexity evolve? This study suggests that the likelihood of mutations increasing phenotypic complexity becomes smaller when the phenotype itself is complex. In addition, the complexity of the genotype-phenotype map (GPM) also increases with the phenotypic complexity. We show that complex GPMs and the above mutational asymmetry are inevitable consequences of how genes need to be wired in order to build complex and robust phenotypes during development. We randomly wired genes and cell behaviors into networks in EmbryoMaker. EmbryoMaker is a mathematical model of development that can simulate any gene network, all animal cell behaviors (division, adhesion, apoptosis, etc.), cell signaling, cell and tissues biophysics, and the regulation of those behaviors by gene products. Through EmbryoMaker we simulated how each random network regulates development and the resulting morphology (i.e. a specific distribution of cells and gene expression in 3D). This way we obtained a zoo of possible 3D morphologies. Real gene networks are not random, but a random search allows a relatively unbiased exploration of what is needed to develop complex robust morphologies. Compared to the networks leading to simple morphologies, the networks leading to complex morphologies have the following in common: 1) They are rarer; 2) They need to be finely tuned; 3) Mutations in them tend to decrease morphological complexity; 4) They are less robust to noise; and 5) They have more complex GPMs. These results imply that, when complexity evolves, it does so at a progressively decreasing rate over generations. This is because as morphological complexity increases, the likelihood of mutations increasing complexity decreases, morphologies become less robust to noise, and the GPM becomes more complex. We find some properties in common, but also some important differences, with non-developmental GPM models (e.g. RNA, protein and gene networks in single cells).

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/ee30aa9658b0/pcbi.1008570.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/2fcfd7b000ab/pcbi.1008570.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/e24145e5a3f7/pcbi.1008570.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/5ca7f6de5725/pcbi.1008570.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/c675440179f1/pcbi.1008570.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/ee0db3f70ab9/pcbi.1008570.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/1cfe2cfa66d2/pcbi.1008570.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/5d6e94a975aa/pcbi.1008570.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/1e6472816127/pcbi.1008570.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/c80a68cb93fc/pcbi.1008570.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/6ede5b480945/pcbi.1008570.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/ee30aa9658b0/pcbi.1008570.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/2fcfd7b000ab/pcbi.1008570.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/e24145e5a3f7/pcbi.1008570.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/5ca7f6de5725/pcbi.1008570.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/c675440179f1/pcbi.1008570.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/ee0db3f70ab9/pcbi.1008570.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/1cfe2cfa66d2/pcbi.1008570.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/5d6e94a975aa/pcbi.1008570.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/1e6472816127/pcbi.1008570.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/c80a68cb93fc/pcbi.1008570.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/6ede5b480945/pcbi.1008570.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/7939363/ee30aa9658b0/pcbi.1008570.g011.jpg

相似文献

[1]
On the evolution and development of morphological complexity: A view from gene regulatory networks.

PLoS Comput Biol. 2021-2-24

[2]
Cell signaling stabilizes morphogenesis against noise.

Development. 2019-10-18

[3]
A developmental systems perspective on epistasis: computational exploration of mutational interactions in model developmental regulatory networks.

PLoS One. 2009-9-7

[4]
Evolution of phenotypic fluctuation under host-parasite interactions.

PLoS Comput Biol. 2021-11

[5]
[Self-organization in the ontogeny of multicellular organisms: a computer simulation].

Zh Obshch Biol. 2011

[6]
Decanalizing thinking on genetic canalization.

Semin Cell Dev Biol. 2018-5-24

[7]
Simulation study on effects of signaling network structure on the developmental increase in complexity.

J Theor Biol. 2004-11-7

[8]
On the origins of developmental robustness: modeling buffering mechanisms against cell-level noise.

Development. 2023-12-15

[9]
Why and how genetic canalization evolves in gene regulatory networks.

BMC Evol Biol. 2016-11-8

[10]
Network evolution of body plans.

PLoS One. 2008-7-23

引用本文的文献

[1]
Bias in the arrival of variation can dominate over natural selection in Richard Dawkins's biomorphs.

PLoS Comput Biol. 2024-3

[2]
Reducing Epistasis and Pleiotropy Can Avoid the Survival of the Flattest Tragedy.

Biology (Basel). 2024-3-17

[3]
A shark-inspired general model of tooth morphogenesis unveils developmental asymmetries in phenotype transitions.

Proc Natl Acad Sci U S A. 2023-4-11

[4]
Divergent vertebral formulae shape the evolution of axial complexity in mammals.

Nat Ecol Evol. 2023-3

[5]
Predicting phenotype transition probabilities via conditional algorithmic probability approximations.

J R Soc Interface. 2022-12

[6]
Genome-Wide Identification and Characterization of the Oat ( L.) WRKY Transcription Factor Family.

Genes (Basel). 2022-10-21

[7]
Computational modeling and analysis of the morphogenetic domain signaling networks regulating embryogenesis.

Comput Struct Biotechnol J. 2022-6-8

[8]
Reply to Ocklenburg and Mundorf: The interplay of developmental bias and natural selection.

Proc Natl Acad Sci U S A. 2022-7-12

[9]
Symmetry and simplicity spontaneously emerge from the algorithmic nature of evolution.

Proc Natl Acad Sci U S A. 2022-3-15

[10]
Correction: On the evolution and development of morphological complexity: A view from gene regulatory networks.

PLoS Comput Biol. 2021-12-10

本文引用的文献

[1]
Using small samples to estimate neutral component size and robustness in the genotype-phenotype map of RNA secondary structure.

J R Soc Interface. 2020-5

[2]
Cell signaling stabilizes morphogenesis against noise.

Development. 2019-10-18

[3]
Inherent forms and the evolution of evolution.

J Exp Zool B Mol Dev Evol. 2019-8-5

[4]
Differential tissue growth and cell adhesion alone drive early tooth morphogenesis: An ex vivo and in silico study.

PLoS Comput Biol. 2018-2-26

[5]
Input-output maps are strongly biased towards simple outputs.

Nat Commun. 2018-2-22

[6]
Phenotypes can be robust and evolvable if mutations have non-local effects on sequence constraints.

J R Soc Interface. 2018-1

[7]
Complexity: the organizing principle at the interface of biological (dis)order.

J Genet. 2017-7

[8]
PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY.

Evolution. 1996-6

[9]
AN EXPLANATION FOR COPE'S RULE.

Evolution. 1973-3

[10]
The genotype-phenotype map of an evolving digital organism.

PLoS Comput Biol. 2017-2-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索