Suppr超能文献

蛋白质相互作用网络的结构与进化:链接动态和基因复制的统计模型

Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications.

作者信息

Berg Johannes, Lässig Michael, Wagner Andreas

机构信息

Institut für Theoretische Physik, Universität zu Köln, Zülpicherstr, 77, 50937 Köln, Germany.

出版信息

BMC Evol Biol. 2004 Nov 27;4:51. doi: 10.1186/1471-2148-4-51.

Abstract

BACKGROUND

The structure of molecular networks derives from dynamical processes on evolutionary time scales. For protein interaction networks, global statistical features of their structure can now be inferred consistently from several large-throughput datasets. Understanding the underlying evolutionary dynamics is crucial for discerning random parts of the network from biologically important properties shaped by natural selection.

RESULTS

We present a detailed statistical analysis of the protein interactions in Saccharomyces cerevisiae based on several large-throughput datasets. Protein pairs resulting from gene duplications are used as tracers into the evolutionary past of the network. From this analysis, we infer rate estimates for two key evolutionary processes shaping the network: (i) gene duplications and (ii) gain and loss of interactions through mutations in existing proteins, which are referred to as link dynamics. Importantly, the link dynamics is asymmetric, i.e., the evolutionary steps are mutations in just one of the binding parters. The link turnover is shown to be much faster than gene duplications. Both processes are assembled into an empirically grounded, quantitative model for the evolution of protein interaction networks.

CONCLUSIONS

According to this model, the link dynamics is the dominant evolutionary force shaping the statistical structure of the network, while the slower gene duplication dynamics mainly affects its size. Specifically, the model predicts (i) a broad distribution of the connectivities (i.e., the number of binding partners of a protein) and (ii) correlations between the connectivities of interacting proteins, a specific consequence of the asymmetry of the link dynamics. Both features have been observed in the protein interaction network of S. cerevisiae.

摘要

背景

分子网络的结构源自进化时间尺度上的动态过程。对于蛋白质相互作用网络,现在可以从几个高通量数据集中一致地推断出其结构的全局统计特征。理解潜在的进化动态对于区分网络中由自然选择塑造的生物学重要属性的随机部分至关重要。

结果

我们基于几个高通量数据集对酿酒酵母中的蛋白质相互作用进行了详细的统计分析。由基因复制产生的蛋白质对被用作追溯网络进化历史的标记。通过该分析,我们推断出塑造网络的两个关键进化过程的速率估计值:(i)基因复制,以及(ii)通过现有蛋白质中的突变导致的相互作用的获得和丧失,这被称为链接动态。重要的是,链接动态是不对称的,即进化步骤仅发生在一个结合伙伴中的突变。结果表明,链接周转比基因复制快得多。这两个过程都被整合到一个基于经验的蛋白质相互作用网络进化定量模型中。

结论

根据该模型,链接动态是塑造网络统计结构的主要进化力量,而较慢的基因复制动态主要影响其大小。具体而言,该模型预测(i)连接性(即蛋白质的结合伙伴数量)的广泛分布,以及(ii)相互作用蛋白质的连接性之间的相关性,这是链接动态不对称的一个特定结果。这两个特征在酿酒酵母的蛋白质相互作用网络中都已被观察到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a8/544576/3d31dd6a8bb3/1471-2148-4-51-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验