Suppr超能文献

杂种优势中倍增基因作用与任意基因作用的比较

Multiplicative vs. arbitrary gene action in heterosis.

作者信息

Schnell F W, Cockerham C C

机构信息

Institute of Plant Breeding, Seed Science and Population Genetics, Hohenheim University, Stuttgart, Germany.

出版信息

Genetics. 1992 Jun;131(2):461-9. doi: 10.1093/genetics/131.2.461.

Abstract

In this article we investigate multiplicative effects between genes in relation to heterosis. The extensive literature on heterosis due to multiplicative effects between characters is reviewed, as is earlier work on the genetic description of heterosis. A two-locus diallelic model of arbitrary gene action is used to derive linear parameters for two multiplicative models. With multiplicative action between loci, epistatic effects are nonlinear functions of one-locus effects and the mean. With completely multiplicative action, the mean and additive effects form similar restrictions for all the rest of the effects. Extensions to more than two loci are indicated. The linear parameters of various models are then used to describe heterosis, which is taken as the difference between respective averages of a cross (F1) and its two parent populations (P). The difference (F2 - P) is also discussed. Two parts of heterosis are distinguished: part I arising from dominance, and part II due to additive x additive (a x a)-epistasis. Heterosis with multiplicative action between loci implies multiplicative accumulation of heterosis present at individual loci in part I, in addition to multiplicative (a x a)-interaction in part II. Heterosis with completely multiplicative action can only be negative (i.e., the F1 values must be less than the midparent), but the difference (F2 - P) can be positive under certain conditions. Heterosis without dominance can arise from multiplicative as well as any other nonadditive action between loci, as is exemplified by diminishing return interaction. The discussion enlarges the scope in various directions: the genetic significance of multiplicative models is considered.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

在本文中,我们研究了基因间的相乘效应与杂种优势的关系。我们回顾了关于性状间相乘效应导致杂种优势的大量文献,以及早期关于杂种优势遗传描述的工作。使用一个双位点双等位基因的任意基因作用模型来推导两个相乘模型的线性参数。在位点间存在相乘作用时,上位性效应是一位点效应和均值的非线性函数。在完全相乘作用下,均值和加性效应对于所有其他效应形成类似的限制。文中指出了扩展到两个以上位点的情况。然后使用各种模型的线性参数来描述杂种优势,杂种优势被视为杂交种(F1)与其两个亲本群体(P)各自平均值之间的差异。还讨论了(F2 - P)的差异。区分了杂种优势的两个部分:第一部分源于显性,第二部分归因于加性×加性(a×a)上位性。位点间具有相乘作用的杂种优势意味着第一部分中单个位点存在的杂种优势的相乘积累,以及第二部分中的相乘(a×a)相互作用。具有完全相乘作用的杂种优势只能是负的(即F1值必须小于中亲值),但在某些条件下(F2 - P)的差异可以是正的。无显性的杂种优势可由位点间的相乘作用以及任何其他非加性作用产生,如递减回报相互作用所示。讨论从多个方向扩展了范围:考虑了相乘模型的遗传学意义。(摘要截于250字)

相似文献

引用本文的文献

9
The impact of epistasis in the heterosis and combining ability analyses.上位性在杂种优势和配合力分析中的影响。
Front Plant Sci. 2023 Apr 18;14:1168419. doi: 10.3389/fpls.2023.1168419. eCollection 2023.

本文引用的文献

1
MOCK-DOMINANCE AND HYBRID VIGOR.拟显性与杂种优势。
Science. 1942 Sep 18;96(2490):280-1. doi: 10.1126/science.96.2490.280.
2
"MOCK DOMINANCE".“模拟优势”
Science. 1943 May 21;97(2525):464-5. doi: 10.1126/science.97.2525.464.
4
Estimation of the Components of Heterosis.杂种优势组成部分的估算
Genetics. 1958 Mar;43(2):223-34. doi: 10.1093/genetics/43.2.223.
8
Genetic slippage in response to selection for multiple objectives.对多个目标进行选择时的基因滑移。
Cold Spring Harb Symp Quant Biol. 1955;20:213-24. doi: 10.1101/sqb.1955.020.01.020.
9
The molecular basis of dominance.显性的分子基础。
Genetics. 1981 Mar-Apr;97(3-4):639-66. doi: 10.1093/genetics/97.3-4.639.
10
[Influencing of heterosis by epistasis].
Naturwissenschaften. 1970 Sep;57(9):461. doi: 10.1007/BF00607752.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验