Suppr超能文献

使用基于小波的诊断方法对心电图压缩技术进行质量评估。

Quality assessment of ECG compression techniques using a wavelet-based diagnostic measure.

作者信息

Al-Fahoum Amjed S

机构信息

Electronic Engineering Department, Yarmouk University, Irbid, Jordan.

出版信息

IEEE Trans Inf Technol Biomed. 2006 Jan;10(1):182-91. doi: 10.1109/titb.2005.855554.

Abstract

Electrocardiograph (ECG) compression techniques are gaining momentum due to the huge database requirements and wide band communication channels needed to maintain high quality ECG transmission. Advances in computer software and hardware enable the birth of new techniques in ECG compression, aiming at high compression rates. In general, most of the introduced ECG compression techniques depend on their evaluation performance on either inaccurate measures or measures targeting random behavior of error. In this paper, a new wavelet-based quality measure is proposed. A new wavelet-based quality measure is proposed. The new approach is based on decomposing the segment of interest into frequency bands where a weighted score is given to the band depending on its dynamic range and its diagnostic significance. A performance evaluation of the measure is conducted quantitatively and qualitatively. Comparative results with existing quality measures show that the new measure is insensitive to error variation, is accurate, and correlates very well with subjective tests.

摘要

由于维持高质量心电图传输需要庞大的数据库要求和宽带通信渠道,心电图(ECG)压缩技术正日益受到关注。计算机软件和硬件的进步促使了旨在实现高压缩率的心电图压缩新技术的诞生。一般来说,大多数引入的心电图压缩技术在评估性能时,要么依赖于不准确的测量方法,要么依赖于针对误差随机行为的测量方法。本文提出了一种基于小波的新质量度量方法。该新方法基于将感兴趣的片段分解为频带,根据其动态范围和诊断意义为每个频带赋予加权分数。对该度量方法进行了定量和定性的性能评估。与现有质量度量方法的比较结果表明,新方法对误差变化不敏感、准确,并且与主观测试的相关性非常好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验